Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the interaction between adsorbed layers of monoolein and the lipase action on the formed layers
YKI – Ytkemiska institutet.
2002 (engelsk)Inngår i: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 26, s. 172-182Artikkel i tidsskrift (Fagfellevurdert)
Abstract [en]

We used the Surface Force Apparatus (SFA) and ellipsometry techniques to study the interaction forces and the adsorption behavior of monoolein (MO), respectively. MO was adsorbed from water to a hydrophobised mica or silica surface. In addition the effect of added lipase, Thermomyces (Humicula) lanuginosa lipase (TLL), to an adsorbed layer of MO was investigated. The force versus distance curves between two MO covered surfaces feature a strong repulsive interaction beneath 400 Å. The range of the repulsive force decreases, however, with the number of approaches. No adhesion was observed, provided that the surfaces were not taken to hydrophobic contact. The surface separation at MO¯MO contact was determined to about 55 Å. This means a layer thickness of about 27 Å, which is comparable to the thickness (25 Å) determined by ellipsometry. The repulsive force may arise from compression of a cubic phase of MO. This phase are suggested to form between the surfaces when they approach close contact due to capillary induced phase separation (CIPS) from the saturated MO solution. The repulsive force changes significantly with time after addition of TLL (concentration of about 1?10-8 M). In contrast to the force curves recorded before adding TLL, the surfaces do not seem to be completely covered with MO as we always observed an attractive force (inward jump) of similar range as was observed between pure OTE surfaces. Ellipsometry measurement of TLL action on MO covered hydrophobic surface reveals a significant and sharp decrease of the amounts adsorbed. Furthermore, the rate of decrease and reduction in adsorbed amount increased with TLL concentration.

sted, utgiver, år, opplag, sider
2002. Vol. 26, s. 172-182
Emneord [en]
Thermomyces (Humicula) lanuginosa lipase, monoolein, adsorption, lipase action, ellipsometry, surface forces
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-26484OAI: oai:DiVA.org:ri-26484DiVA, id: diva2:1053486
Merknad
A1502Tilgjengelig fra: 2016-12-08 Laget: 2016-12-08 Sist oppdatert: 2017-11-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen
I samme tidsskrift
Colloids and Surfaces B: Biointerfaces

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 12 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7