Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental study on the maximum ceiling gas temperature driven by double fires in a tunnel with natural ventilation
University of Science and Technology of China, China.
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0000-0001-7744-2390
RISE Research Institutes of Sweden, Safety and Transport, Fire and Safety.ORCID iD: 0000-0002-9340-6768
University of Science and Technology of China, China.
Show others and affiliations
2024 (English)In: Tunnelling and Underground Space Technology, ISSN 0886-7798, E-ISSN 1878-4364, Vol. 144, article id 105550Article in journal (Refereed) Published
Abstract [en]

The maximum gas temperature below the ceiling is an important parameter for tunnel safety. The present study analyzed the characteristics of the maximum excess ceiling gas temperature driven by double fire sources in a naturally ventilated tunnel. A series of small-scale tunnel fire experiments were carried out with different fire separation distances and heat release rates. Theoretical analysis based on the equivalent virtual origin was also performed. The results showed that there exists only one peak gas temperature when the two fire plumes are merged before reaching the ceiling, while two peak gas temperatures can be observed when the two fire plumes are completely separated. The maximum excess gas temperature below the tunnel ceiling gradually decreases with an increasing fire separation distance in the plume merging region (S < Scp). When the fire separation distance increases further (S > Scp), the effect of the fire separation distance on the maximum gas temperature below the ceiling is very limited. Furthermore, a model using an equivalent fire source was proposed to predict the maximum excess gas temperature below the ceiling, considering different plume merging states. The present study contributes to the understanding of the maximum excess gas temperature characteristics of the smoke flow driven by double fires with an equal heat release rate in naturally ventilated tunnels. 

Place, publisher, year, edition, pages
Elsevier Ltd , 2024. Vol. 144, article id 105550
Keywords [en]
Ceilings; Fires; Gases; Merging; Smoke; Thermal plumes; Ventilation; Double fire source; Fire separation; Gas temperature; Heat release; Maximum excess gas temperature; Natural ventilation; Separation distances; Temperature profiles; Tunnel fires; Ventilated tunnels; Gas temperature
National Category
Infrastructure Engineering
Identifiers
URN: urn:nbn:se:ri:diva-68815DOI: 10.1016/j.tust.2023.105550Scopus ID: 2-s2.0-85180417123OAI: oai:DiVA.org:ri-68815DiVA, id: diva2:1825085
Funder
Brandforsk
Note

This work was financially supported by National Key Research and Development Program of China (No. 2022YFC3005201 ), the Tunnel and Underground Safety Center (TUSC), the Swedish Fire Research Board (BRANDFORSK), Youth Innovation Promotion Association CAS (No. CX2320007001 ), Fundamental Research Funds for the Central Universities under Grants (No. WK2320000048 and No. WK2320000056 ) and USTC Tang Scholar, which are greatly acknowledged.

Available from: 2024-01-08 Created: 2024-01-08 Last updated: 2024-01-08Bibliographically approved

Open Access in DiVA

fulltext(2632 kB)69 downloads
File information
File name FULLTEXT01.pdfFile size 2632 kBChecksum SHA-512
6d9bfc2574578bee8661cf82d9c510b8e501a398b57c4d85c1b171ccb438b46ac494a39f5c60cb13625b1d617a093767b9481c2718ef939f9bbde34cb027beb3
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Li, Ying ZhenIngason, Haukur

Search in DiVA

By author/editor
Li, Ying ZhenIngason, Haukur
By organisation
Fire and Safety
In the same journal
Tunnelling and Underground Space Technology
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 69 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 209 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf