Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanorheological studies of xanthan/water solutions using magnetic nanoparticles
RISE - Research Institutes of Sweden, ICT, Acreo.
RISE - Research Institutes of Sweden, ICT, Acreo.
RISE - Research Institutes of Sweden, ICT, Acreo.
RISE - Research Institutes of Sweden, ICT, Acreo.
Show others and affiliations
2019 (English)In: Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, E-ISSN 1873-4766, Vol. 473, p. 268-271Article in journal (Refereed) Published
Abstract [en]

We show results of nanorheological studies of different concentrations of xanthan (non-Newtonian fluid) in water using magnetic nanoparticles (MNPs) together with the AC susceptibility (ACS) vs frequency method. For comparison we also show the ACS response for different concentrations of glycerol in water (Newtonian fluid). The ACS response is measured, and the data is modelled using dynamic magnetic models and different viscoelastic models. We study the ACS response (in-phase and out-of-phase ACS components) at different concentrations of xanthan in water (up to 1 wt% xanthan) and with a constant concentration of MNPs. We use MNP systems that show Brownian relaxation (sensitive to changes in the environmental properties around the MNPs). ACS measurements are performed using the DynoMag system. The Brownian relaxation of the MNP system peak is shifting down in frequency and the ACS response is broadening and decreases due to changes in the viscoelastic properties around the MNPs in the xanthan solution. The viscosity and the storage moduli are determined at each excitation frequency and compared with traditional macroscopic small amplitude oscillatory shear rheological measurements. The results from the traditional rheological and nanorheological measurements correlate well at higher xanthan concentration.

Place, publisher, year, edition, pages
Elsevier B.V. , 2019. Vol. 473, p. 268-271
Keywords [en]
AC susceptibility, Brownian relaxation, Glycerol, Magnetic multi-core nanoparticles, Nanorheological measurements, Xanthan, Brownian movement, Digital storage, Magnetic susceptibility, Nanoparticles, Non Newtonian flow, Non Newtonian liquids, Rheology, Viscoelasticity, Ac susceptibility (ACS), Brownian relaxations, Magnetic nano-particles, Magnetic nanoparti cles (MNPs), Multi core, Viscoelastic properties, Nanomagnetics
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-35560DOI: 10.1016/j.jmmm.2018.09.103Scopus ID: 2-s2.0-85055085870OAI: oai:DiVA.org:ri-35560DiVA, id: diva2:1261060
Note

; Funding details: Svenska Forskningsrådet Formas; Funding details: 2016-00253, Svenska Forskningsrådet Formas; Funding text: The authors acknowledge Josefine Mosser for assistance with experimental work. This project receives funding from The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning ( FORMAS ) under grant number 2016-00253 .

Available from: 2018-11-06 Created: 2018-11-06 Last updated: 2019-06-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Blomgren, JakobStading, MatsJohansson, Christer

Search in DiVA

By author/editor
Blomgren, JakobStading, MatsJohansson, Christer
By organisation
AcreoAgrifood and Bioscience
In the same journal
Journal of Magnetism and Magnetic Materials
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 252 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7