Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The CO2 capturing ability of cellulose dissolved in NaOH(aq) at low temperature
Chalmers University of Technology, Sweden.
University of Gothenburg, Sweden ; Chalmers University of Technology, Sweden.
RISE - Research Institutes of Sweden, Bioeconomy, Biorefinery and Energy.ORCID iD: 0000-0003-1144-0602
Chalmers University of Technology, Sweden.
2018 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, no 14, p. 3279-3286Article in journal (Refereed) Published
Abstract [en]

Herein, we explore the intrinsic ability of cellulose dissolved in NaOH(aq) to reversibly capture CO2. The stability of cellulose solutions differed significantly when adding CO2 prior to or after the dissolution of cellulose. ATR-IR spectroscopy on cellulose regenerated from the solutions, using ethanol, revealed the formation of a new carbonate species likely to be cellulose carbonate. To elucidate the interaction of cellulose with CO2 at the molecular level, a 13C NMR spectrum was recorded on methyl α-d-glucopyranoside (MeO-Glcp), a model compound, dissolved in NaOH(aq), which showed a difference in chemical shift when CO2 was added prior to or after the dissolution of MeO-Glcp, without a change in pH. The uptake of CO2 was found to be more than twice as high when CO2 was added to a solution after the dissolution of MeO-Glcp. Altogether, a mechanism for the observed CO2 capture is proposed, involving the formation of an intermediate cellulose carbonate upon the reaction of a cellulose alkoxide with CO2. The intermediate was observed as a captured carbonate structure only in regenerated samples, while its corresponding NMR peak in solution was absent. The reason for this is plausibly a rather fast hydrolysis of the carbonate intermediate by water, leading to the formation of CO3 2-, and thus increased capture of CO2. The potential of using carbohydrates as CO2 capturing agents in NaOH(aq) is shown to be simple and resource-effective in terms of the capture and regeneration of CO2.

Place, publisher, year, edition, pages
2018. Vol. 20, no 14, p. 3279-3286
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-34482DOI: 10.1039/c8gc01092gScopus ID: 2-s2.0-85050451639OAI: oai:DiVA.org:ri-34482DiVA, id: diva2:1237298
Available from: 2018-08-08 Created: 2018-08-08 Last updated: 2018-08-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Östlund, Åsa

Search in DiVA

By author/editor
Östlund, Åsa
By organisation
Biorefinery and Energy
In the same journal
Green Chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 122 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf