Change search
Link to record
Permanent link

Direct link
Publications (10 of 18) Show all publications
Andersson Ersman, P., Freitag, K., Nilsson, M., Åhlin, J., Brooke, R., Nordgren, N., . . . Beni, V. (2023). Electrochromic Displays Screen Printed on Transparent Nanocellulose-Based Substrates. Advanced Photonics Research, Article ID 2200012.
Open this publication in new window or tab >>Electrochromic Displays Screen Printed on Transparent Nanocellulose-Based Substrates
Show others...
2023 (English)In: Advanced Photonics Research, ISSN 2699-9293, article id 2200012Article in journal (Refereed) Published
Abstract [en]

Manufacturing of electronic devices via printing techniques is often considered to be an environmentally friendly approach, partially due to the efficient utilization of materials. Traditionally, printed electronic components (e.g., sensors, transistors, and displays) are relying on flexible substrates based on plastic materials; this is especially true in electronic display applications where, most of the times, a transparent carrier is required in order to enable presentation of the display content. However, plastic-based substrates are often ruled out in end user scenarios striving toward sustainability. Paper substrates based on ordinary cellulose fibers can potentially replace plastic substrates, but the opaqueness limits the range of applications where they can be used. Herein, electrochromic displays that are manufactured, via screen printing, directly on state-of-the-art fully transparent substrates based on nanocellulose are presented. Several different nanocellulose-based substrates, based on either nanofibrillated or nanocrystalline cellulose, are manufactured and evaluated as substrates for the manufacturing of electrochromic displays, and the optical and electrical switching performances of the resulting display devices are reported and compared. The reported devices do not require the use of metals and/or transparent conductive oxides, thereby providing a sustainable all-printed electrochromic display technology.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2023
Keywords
electrochromic displays, nanocellulose, organic electronics, PEDOT:PSS, printed electronics
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-59998 (URN)10.1002/adpr.202200012 (DOI)
Note

This project has received funding from the European Union's Horizon 2020 research and innovation program under the grant agreement no. 761000—GREENSENSE. Additional financial support was provided by the Swedish Foundation for Strategic Research (grant agreement no. EM16-0002).

Available from: 2022-08-26 Created: 2022-08-26 Last updated: 2023-12-06Bibliographically approved
Abitbol, T., Kubat, M., Brännvall, E., Kotov, N., Johnson, C. M., Nizamov, R., . . . Guerreiro, M. P. (2023). Isolation of Mixed Compositions of Cellulose Nanocrystals, Microcrystalline Cellulose, and Lignin Nanoparticles from Wood Pulps. ACS Omega, 8(24), 21474-21484
Open this publication in new window or tab >>Isolation of Mixed Compositions of Cellulose Nanocrystals, Microcrystalline Cellulose, and Lignin Nanoparticles from Wood Pulps
Show others...
2023 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 8, no 24, p. 21474-21484Article in journal (Refereed) Published
Abstract [en]

From a circular economy perspective, one-pot strategies for the isolation of cellulose nanomaterials at a high yield and with multifunctional properties are attractive. Here, the effects of lignin content (bleached vs unbleached softwood kraft pulp) and sulfuric acid concentration on the properties of crystalline lignocellulose isolates and their films are explored. Hydrolysis at 58 wt % sulfuric acid resulted in both cellulose nanocrystals (CNCs) and microcrystalline cellulose at a relatively high yield (>55%), whereas hydrolysis at 64 wt % gave CNCs at a lower yield (<20%). CNCs from 58 wt % hydrolysis were more polydisperse and had a higher average aspect ratio (1.5-2×), a lower surface charge (2×), and a higher shear viscosity (100-1000×). Hydrolysis of unbleached pulp additionally yielded spherical nanoparticles (NPs) that were <50 nm in diameter and identified as lignin by nanoscale Fourier transform infrared spectroscopy and IR imaging. Chiral nematic self-organization was observed in films from CNCs isolated at 64 wt % but not from the more heterogeneous CNC qualities produced at 58 wt %. All films degraded to some extent under simulated sunlight trials, but these effects were less pronounced in lignin-NP-containing films, suggesting a protective feature, but the hemicellulose content and CNC crystallinity may be implicated as well. Finally, heterogeneous CNC compositions obtained at a high yield and with improved resource efficiency are suggested for specific nanocellulose uses, for instance, as thickeners or reinforcing fillers, representing a step toward the development of application-tailored CNC grades. © 2023 The Authors. 

Place, publisher, year, edition, pages
American Chemical Society, 2023
National Category
Biochemicals
Identifiers
urn:nbn:se:ri:diva-65709 (URN)10.1021/acsomega.3c00295 (DOI)2-s2.0-85162876606 (Scopus ID)
Note

This research was funded by the RISE RP18 Nanocellulose Research Program, the RISE Nanocellulose Competence Platform, and the Tandem Forest Values Program “SUBSTAINABLE” project (Formas grant number 2019-02508).

Available from: 2023-08-09 Created: 2023-08-09 Last updated: 2024-03-13Bibliographically approved
López-Guajardo, A., Zafar, A., Al Hennawi, K., Rossi, V., Alrwaili, A., Medcalf, J. D., . . . Gad, A. K. (2023). Regulation of cellular contractile force, shape and migration of fibroblasts by oncogenes and Histone deacetylase 6. Frontiers in Molecular Biosciences, 10, Article ID 1197814.
Open this publication in new window or tab >>Regulation of cellular contractile force, shape and migration of fibroblasts by oncogenes and Histone deacetylase 6
Show others...
2023 (English)In: Frontiers in Molecular Biosciences, E-ISSN 2296-889X, Vol. 10, article id 1197814Article in journal (Refereed) Published
Abstract [en]

The capacity of cells to adhere to, exert forces upon and migrate through their surrounding environment governs tissue regeneration and cancer metastasis. The role of the physical contractile forces that cells exert in this process, and the underlying molecular mechanisms are not fully understood. We, therefore, aimed to clarify if the extracellular forces that cells exert on their environment and/or the intracellular forces that deform the cell nucleus, and the link between these forces, are defective in transformed and invasive fibroblasts, and to indicate the underlying molecular mechanism of control. Confocal, Epifluorescence and Traction force microscopy, followed by computational analysis, showed an increased maximum contractile force that cells apply on their environment and a decreased intracellular force on the cell nucleus in the invasive fibroblasts, as compared to normal control cells. Loss of HDAC6 activity by tubacin-treatment and siRNA-mediated HDAC6 knockdown also reversed the reduced size and more circular shape and defective migration of the transformed and invasive cells to normal. However, only tubacin-mediated, and not siRNA knockdown reversed the increased force of the invasive cells on their surrounding environment to normal, with no effects on nuclear forces. We observed that the forces on the environment and the nucleus were weakly positively correlated, with the exception of HDAC6 siRNA-treated cells, in which the correlation was weakly negative. The transformed and invasive fibroblasts showed an increased number and smaller cell-matrix adhesions than control, and neither tubacin-treatment, nor HDAC6 knockdown reversed this phenotype to normal, but instead increased it further. This highlights the possibility that the control of contractile force requires separate functions of HDAC6, than the control of cell adhesions, spreading and shape. These data are consistent with the possibility that defective force-transduction from the extracellular environment to the nucleus contributes to metastasis, via a mechanism that depends upon HDAC6. To our knowledge, our findings present the first correlation between the cellular forces that deforms the surrounding environment and the nucleus in fibroblasts, and it expands our understanding of how cells generate contractile forces that contribute to cell invasion and metastasis. Copyright © 2023 López-Guajardo, Zafar, Al Hennawi, Rossi, Alrwaili, Medcalf, Dunning, Nordgren, Pettersson, Estabrook, Hawkins and Gad.

Place, publisher, year, edition, pages
Frontiers Media SA, 2023
Keywords
cell adhesion, cellular contractile forces, fibroblasts, Histone deacetylase 6, intracellular forces on nucleus, metastasis, oncogenes, Traction force microscopy
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:ri:diva-66143 (URN)10.3389/fmolb.2023.1197814 (DOI)2-s2.0-85167455683 (Scopus ID)
Note

We thank the Fundação para a Ciência e a Tecnologia (FCT),the Portuguese Government (PEst-OE/QUI/UI0674/2013) andthe Agência Regional para o Desenvolvimento da InvestigaçaõTecnologia e Inovação (ARDITI), M1420-01-0145-FEDER000005, Portugal, and we are grateful to the University ofSheffield for financial support. 

Available from: 2023-09-20 Created: 2023-09-20 Last updated: 2023-09-20Bibliographically approved
Majee, S., Zhao, W., Sugunan, A., Gillgren, .. ., Larsson, J. A., Brooke, R., . . . Ahniyaz, A. (2021). Highly Conductive Films by Rapid Photonic Annealing of Inkjet Printable Starch–Graphene Ink. Advanced Materials Interfaces, 9(5), Article ID 2101884.
Open this publication in new window or tab >>Highly Conductive Films by Rapid Photonic Annealing of Inkjet Printable Starch–Graphene Ink
Show others...
2021 (English)In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 9, no 5, article id 2101884Article in journal (Refereed) Published
Abstract [en]

A general formulation engineering method is adopted in this study to produce a highly concentrated (≈3 mg mL−1) inkjet printable starch–graphene ink in aqueous media. Photonic annealing of the starch–graphene ink is validated for rapid post-processing of printed films. The experimental results demonstrate the role of starch as dispersing agent for graphene in water and photonic pulse energy in enhancing the electrical properties of the printed graphene patterns, thus leading to an electrical conductivity of ≈2.4 × 104 S m−1. The curing mechanism is discussed based on systematic material studies. The eco-friendly and cost-efficient approach presented in this work is of technical potential for the scalable production and integration of conductive graphene inks for widespread applications in printed and flexible electronics. 

Place, publisher, year, edition, pages
John Wiley and Sons Inc, 2021
Keywords
Conductive films, Flexible electronics, Graphene, Ink, Aqueous media, Curing mechanism, Dispersing agent, Electrical conductivity, Engineering methods, Formulation engineering, Graphene inks, Ink jet, Post-processing, Pulse energies, Starch
National Category
Materials Chemistry
Identifiers
urn:nbn:se:ri:diva-58169 (URN)10.1002/admi.202101884 (DOI)2-s2.0-85122063587 (Scopus ID)
Note

Funding details: Stiftelsen för Strategisk Forskning, SSF, FID‐15‐0105; Funding text 1: This work was financially supported by the Swedish Foundation for Strategic Research (SSF, grant no. FID‐15‐0105) and BillerudKorsnäs AB. The authors would like to thank Karin Hallstensson for support with the SEM measurements. The authors are also thankful to Mohammad Yusuf Mulla for supporting in the fabrication of the demonstration circuit.

Available from: 2022-01-14 Created: 2022-01-14 Last updated: 2024-03-03Bibliographically approved
Zhao, W., Sugunan, A., Gillgren, T., Larsson, J., Zhang, Z.-B., Zhang, S.-L., . . . Ahniyaz, A. (2021). Surfactant-Free Stabilization of Aqueous Graphene Dispersions Using Starch as a Dispersing Agent. ACS Omega, 6(18), 12050-12062
Open this publication in new window or tab >>Surfactant-Free Stabilization of Aqueous Graphene Dispersions Using Starch as a Dispersing Agent
Show others...
2021 (English)In: ACS Omega, E-ISSN 2470-1343, Vol. 6, no 18, p. 12050-12062Article in journal (Refereed) Published
Abstract [en]

Attention to graphene dispersions in water with the aid of natural polymers is increasing with improved awareness of sustainability. However, the function of biopolymers that can act as dispersing agents in graphene dispersions is not well understood. In particular, the use of starch to disperse pristine graphene materials deserves further investigation. Here, we report the processing conditions of aqueous graphene dispersions using unmodified starch. We have found that the graphene content of the starch-graphene dispersion is dependent on the starch fraction. The starch-graphene sheets are few-layer graphene with a lateral size of 3.2 μm. Furthermore, topographical images of these starch-graphene sheets confirm the adsorption of starch nanoparticles with a height around 5 nm on the graphene surface. The adsorbed starch nanoparticles are ascribed to extend the storage time of the starch-graphene dispersion up to 1 month compared to spontaneous aggregation in a nonstabilized graphene dispersion without starch. Moreover, the ability to retain water by starch is reduced in the presence of graphene, likely due to environmental changes in the hydroxyl groups responsible for starch-water interactions. These findings demonstrate that starch can disperse graphene with a low oxygen content in water. The aqueous starch-graphene dispersion provides tremendous opportunities for environmental-friendly packaging applications. © 2021 American Chemical Society.

Place, publisher, year, edition, pages
American Chemical Society, 2021
National Category
Physical Chemistry
Identifiers
urn:nbn:se:ri:diva-53478 (URN)10.1021/acsomega.1c00699 (DOI)2-s2.0-85106450176 (Scopus ID)
Note

Funding details: Stiftelsen för Strategisk Forskning, SSF, FID-15-0105; Funding text 1: This work was financially supported by the Swedish Foundation for Strategic Research (SSF, grant no. FID-15-0105) and BillerudKorsnäs AB. The authors thank Karin Hallstensson for support with the SEM/STEM imaging.

Available from: 2021-06-17 Created: 2021-06-17 Last updated: 2023-05-26Bibliographically approved
Shimizu, M., Alvarez-Asencio, R., Niklas, N. & Uedono, A. (2020). Preparation and characterization of cellulose acetate membranes with TEMPO-oxidized cellulose nanofibrils containing alkyl ammonium carboxylates. Cellulose, 27(3), 1357-1365
Open this publication in new window or tab >>Preparation and characterization of cellulose acetate membranes with TEMPO-oxidized cellulose nanofibrils containing alkyl ammonium carboxylates
2020 (English)In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 27, no 3, p. 1357-1365Article in journal (Refereed) Published
Abstract [en]

Cellulose acetate (CA) membranes have been widely used for water purification owing to several advantages, e.g., biocompatibility and low fouling rate. However, they suffer from a lower water flux compared to the other polymeric membranes. Therefore, in this study, CA membranes were blended with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) containing quaternary alkyl ammonium (QA) carboxylates to improve their water flux. When increasing the alkyl chain length of the QAs, the positron lifetime and intensity of the CA membranes increased and decreased respectively, as revealed via positron annihilation lifetime spectroscopy. This indicated that the CA membranes had larger and fewer pores when using the T-CNFs containing QAs with longer alkyl chains. The pure water flux of these membranes also increased with the alkyl chain lengths of QAs although their rejection rate (Rj) decreased accordingly. However, they revealed a potentiality to be used as ultrafiltration membranes, allowing a 99% Rj for albumin. The tensile strength, strain to failure, and work of fracture of the CA membranes increased when blended with T-CNFs. Force measurements using the AFM colloidal probe technique showed that the adhesion between the membrane constituents depends on their surface chemistry. This indicated that the structural differences observed among the blended membranes may be due to the affinity between CA and T-CNF containing QAs with different alkyl chain lengths. This study demonstrates that the properties of CA membranes can be tailored by the addition of T-CNFs with different surface chemistries.

Place, publisher, year, edition, pages
Springer, 2020
Keywords
AFM, Cellulose acetate membrane, Cellulose nanofibril, Colloidal probe force measurement, Counter-ion, Biocompatibility, Carboxylation, Cellulose, Chain length, Colloids, Force measurement, Nanofibers, Positron annihilation spectroscopy, Positrons, Probes, Surface chemistry, Tensile strength, Colloidal probe techniques, Colloidal probes, Counterions, Nanofibril, Positron annihilation lifetime spectroscopy, Structural differences, Ultra-filtration membranes, Membranes
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-40929 (URN)10.1007/s10570-019-02872-5 (DOI)2-s2.0-85075322009 (Scopus ID)
Note

Funding details: Iwatani Naoji Foundation; Funding details: Futaba Electronics Memorial Foundation; Funding details: Ogasawara Foundation for the Promotion of Science and Engineering; Funding details: Izumi Science and Technology Foundation; Funding details: Japan Society for the Promotion of Science, JSPS; Funding details: Yazaki Memorial Foundation for Science and Technology; Funding text 1: This research was supported by Grants-in-Aid for Scientific Research (16H06912, 18K14502) from the Japan Society for the Promotion of Science and the Research Grant Program from Izumi Science and Technology Foundation, Iwatani Naoji Foundation, Futaba Electronics Memorial Foundation, Yazaki Memorial Foundation for Science and Technology, Research Institute for Production Development, and Ogasawara Foundation for the Promotion of Science & Engineering, Japan.

Available from: 2019-12-10 Created: 2019-12-10 Last updated: 2023-05-26Bibliographically approved
Fall, A., Zhao, W., Blademo, Å., Bodelsson, J., Sugunan, A., Nordgren, N., . . . Gillgren, T. (2019). Hybrid Materials of Nanocellulose and Graphene. In: International Conference on Nanotechnology for Renewable Materials 2019: . Paper presented at International Conference on Nanotechnology for Renewable Materials 2019. Chiba. 3 June 2019 through 7 June 2019 (pp. 1069-1080). TAPPI Press, 2
Open this publication in new window or tab >>Hybrid Materials of Nanocellulose and Graphene
Show others...
2019 (English)In: International Conference on Nanotechnology for Renewable Materials 2019, TAPPI Press , 2019, Vol. 2, p. 1069-1080Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
TAPPI Press, 2019
National Category
Materials Engineering
Identifiers
urn:nbn:se:ri:diva-68229 (URN)2-s2.0-85073798897 (Scopus ID)
Conference
International Conference on Nanotechnology for Renewable Materials 2019. Chiba. 3 June 2019 through 7 June 2019
Available from: 2023-12-06 Created: 2023-12-06 Last updated: 2023-12-06Bibliographically approved
Badal Tejedor, M., Pazesh, S., Niklas, N., Schuleit, M., Rutland, M. W., Alderborn, G. & Millqvist-Fureby, A. (2018). Milling induced amorphisation and recrystallization of α-lactose monohydrate. International Journal of Pharmaceutics, 537(1-2), 140-147
Open this publication in new window or tab >>Milling induced amorphisation and recrystallization of α-lactose monohydrate
Show others...
2018 (English)In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 537, no 1-2, p. 140-147Article in journal (Refereed) Published
Abstract [en]

Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition.

Keywords
Amorphisation, Atomic force microscopy, Differential scanning calorimetry, Lactose, Mechanical properties, Milling, Recrystallization, Tableting, TGA, alpha lactose, Article, conformation, crystallization, energy, glass transition temperature, morphology, particle size, powder, priority journal, scanning electron microscopy, spray drying, surface property, thermogravimetry
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-33233 (URN)10.1016/j.ijpharm.2017.12.021 (DOI)2-s2.0-85038844261 (Scopus ID)
Available from: 2018-02-13 Created: 2018-02-13 Last updated: 2023-05-26Bibliographically approved
Badal Tejedor, M., Niklas, N., Schuleit, M., Millqvist-Fureby, A. & Rutland, M. W. (2017). AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting. Langmuir, 33(46), 13180-13188
Open this publication in new window or tab >>AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting
Show others...
2017 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 46, p. 13180-13188Article in journal (Refereed) Published
Abstract [en]

Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture - due to the fast condensation kinetics - leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive effect under the same ambient conditions. The markedly different behavior detected by force measurements clearly shows the sticky and nonsticky propensity of the materials and allows a mechanistic description.

Keywords
Atomic force microscopy, Cellulose, Characterization, Condensation, Floods, Hydrophilicity, Probes, Sugars, Van der Waals forces, Adhesive interaction, Alpha lactose monohydrate, Capillary condensation, Condensation kinetics, Hydrophilic surfaces, Manufacturing process, Micro-crystalline cellulose, Surface characterization, Drug products
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-33146 (URN)10.1021/acs.langmuir.7b02189 (DOI)2-s2.0-85034836128 (Scopus ID)
Available from: 2018-01-31 Created: 2018-01-31 Last updated: 2023-05-26Bibliographically approved
Badal Tejedor, M., Niklas, N., Schuleit, M., Pazesh, S., Alderborn, G., Millqvist-Fureby, A. & Rutland, M. W. (2017). Determination of interfacial amorphicity in functional powders. Langmuir, 33(4), 920-926
Open this publication in new window or tab >>Determination of interfacial amorphicity in functional powders
Show others...
2017 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 33, no 4, p. 920-926Article in journal (Refereed) Published
Abstract [en]

The nature of the surfaces of particles of pharmaceutical ingredients, food powders, and polymers is a determining factor for their performance in for example tableting, powder handling, or mixing. Changes on the surface structure of the material will impact the flow properties, dissolution rate, and tabletability of the powder blend. For crystalline materials, surface amorphization is a phenomenon which is known to impact performance. Since it is important to measure and control the level of amorphicity, several characterization techniques are available to determine the bulk amorphous content of a processed material. The possibility of characterizing the degree of amorphicity at the surface, for example by studying the mechanical properties of the particles' surface at the nanoscale, is currently only offered by atomic force microscopy (AFM). The AFM PeakForce QNM technique has been used to measure the variation in energy dissipation (eV) at the surface of the particles which sheds light on the mechanical changes occurring as a result of amorphization or recrystallization events. Two novel approaches for the characterization of amorphicity are presented here. First, since particles are heterogeneous, we present a methodology to present the results of extensive QNM analysis of multiple particles in a coherent and easily interpreted manner, by studying cumulative distributions of dissipation data with respect to a threshold value which can be used to distinguish the crystalline and amorphous states. To exemplify the approach, which is generally applicable to any material, reference materials of purely crystalline α-lactose monohydrate and completely amorphous spray dried lactose particles were compared to a partially amorphized α-lactose monohydrate sample. Dissipation data are compared to evaluations of the lactose samples with conventional AFM and SEM showing significant topographical differences. Finally, the recrystallization of the surface amorphous regions in response to humidity was followed by studying the dissipation response of a well-defined surface region over time, which confirms both that dissipation measurement is a useful measure of surface amorphicity and that significant recrystallization occurs at the surface in response to humidity.

National Category
Chemical Sciences
Identifiers
urn:nbn:se:ri:diva-28201 (URN)10.1021/acs.langmuir.6b03969 (DOI)2-s2.0-85011117083 (Scopus ID)
Available from: 2017-04-03 Created: 2017-04-03 Last updated: 2023-05-26Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-4472-5102

Search in DiVA

Show all publications