Open this publication in new window or tab >>2024 (English)Collection (editor) (Other academic)
Abstract [en]
The NEWEPS (Nordic Early Warning Early Prevention System) project aim has been to enhance the reliability and efficiency of the Nordic power system through the development and implementation of Wide Area Monitoring System (WAMS) and advanced Wide Area Monitoring, Protection, and Control (WAMPAC) solutions. This comprehensive report documents the vision, methodologies, and outcomes of the project, providing a roadmap for deployment and future developments.
Vision: Architectural, Data Quality, and Visualisation Perspectives
The report outlines a vision of a Nordic WAMS and WAMPAC system, emphasizing the importance of improved assessment, coordinated assessment between Nordic Transmission System Operators (TSOs), consistent situational awareness, and enhanced state estimation. The architectural perspectives highlight the need for a robust and integrated approach to wide area monitoring and controlling of the power system.
Important considerations raised for the architectural perspectives are that:
· Coordination and pre-processing should be considered as common services to ensure fast data processing and consistency.
· When it comes to coordinated assessment, the level of autonomy may vary between different applications ranging from manually entered situational awareness information by operators to automatically issued control actions.
· Since WAMS until recently has been considered complementary in Nordic TSOs power operation, bringing the dynamic conditions into awareness should be considered with the problematic nature of digital transformations. This motivates a flexible application architecture that allows a gradual implementation and adaption of application services.
· More investigations are needed to provide guidance on whether to use a common or separate state estimator in different control systems (as SCADA/EMS and WAMS) as well as regarding if an in-house developed solution is needed to get the functionality required or if third party solutions would be the best option. However, all will introduce benefits and complexities.
· When it comes to WAMPAC, the mechanisms for assessing and managing flexible control schemes is complex. Further investigations are needed for example regarding how to model and exchange information between local and distributed applications, distributed versus different level of centralised automated control and how to benefit from AI/ML and data labelling techniques.
· TSO should have unified functional requirements, but as the maturity over time may differ in their WAN architecture the implementation may be different. A unified design supporting SDN capabilities should however be implemented in the common Nordic inter-TSO WAN network to ensure both integrity and determinism.
Data quality is a critical component of a WAMS or WAMPAC system. The report explores various methods for improving data quality, including system models and data-sharing architectures. With the large amount of time synchronised high-resolution data provided by Phasor Measurement Units (PMUs), the possibilities for advanced monitoring and control techniques are growing. However, high quality data is a prerequisite to be able to integrate such solutions into operation critical processes.
Effective visualisation techniques support the human-system collaboration, enabling operators to increase their situational awareness in order to take informed decisions in real-time. The report addresses the increased importance of visualisation perspectives when more advanced systems, like WAMS and WAMPAC, are becoming integrated in the operation of the power system.
The report also outlines possible strategies for platform flexibility, as scalable and virtualised computing environment, portable application architecture, a flexible integration layer and the advantages with staged development using Big Data analytic and simulation capabilities.
NEWEPS Test & Demonstration Platform
A significant achievement of the project is the development of the NEWEPS Test & Demonstration platform. This platform prototypes functionalities of a future Nordic WAMS and WAMPAC system, enabling testing and demonstration of various applications, including oscillation monitoring, voltage stability, and islanding detection. The Kafka stream processing framework has been selected for integrating applications in the platform and for establishing communication between individual applications.
NEWEPS Test & Demonstration platform interface to the operator in form of a graphical user interface and to the power system in form of standard based PMU data streams originating from historians from PMUs in the Nordic grid, simulation based emulated PMU data, and laboratory based synthetic PMU data. The platform also contains functionalities for issuing alarms and visualizing information related to alarms as well as a scheme for enabling coordinated communication between neighbouring TSOs.
The platform's architecture ensures scalability, modularity, and fault tolerance, bridging the gap between research and industrial application.
WAMS Applications
The report details the development and validation of WAMS applications focused on voltage stability monitoring, natural oscillation monitoring, and forced oscillations and resonance detection. These applications leverage PMU data to provide operators with detailed and accurate information about the grid's operational situation, enhancing situational awareness and decision-making capabilities.
There are several already existing applications for voltage stability monitoring, both model-based and pure measurement based. One great benefit with measurement-based approaches is that they do not depend on state estimators nor on the knowledge of the full power system model. In NEWEPS, the voltage stability index S-Z sensitivity Indicator (SZI), which focuses on sensitivities to define whether the system is stable or not from a voltage stability perspective, has been further developed and tested. The SZI is defined using the ratio of variations of the absolute value of the apparent power of the load and the load impedance. The proposed modifications are mainly intended to improve the SZI performance in relation to network reconfiguration events and operation of regulating devices.
There are also various methods available for detecting natural oscillations using measurement data. In NEWEPS, further development and testing of the stochastic subspace identification (SSI) method have been performed. The SSI method is selected due to its ease of implementation, numerical stability, and ability to work with ambient (non-disturbance) data. The developments include how to consider the observability of modes and to cluster these based on patterns. The clustering supports the ability to track the most important oscillations over time, thus enabling preventive measures to be implemented.
Since the algorithms for detecting oscillations (system modes) using PMU measurements are generally not designed to operate in the presence of forced oscillations, they risk giving biased results if a force oscillation is present. It is therefore important the WAMS application for oscillation detection is able to distinguish between natural and forced oscillations. In NEWEPS a method that fits a Least Squares Autoregressive Moving Average plus Sinusoid (LS-ARMA+S) model to the PMU measurements data has been used to distinguish between natural and forced oscillations. The method was selected because the LS-ARMA+S model can accurately separate an oscillation from the background noise without losing the modal information contained in the noise at the oscillation frequency.
WAMPAC Solutions
The WAMPAC solutions developed in the project aim to secure post-contingency states of the power system by identifying critical contingencies and suggesting the least expensive set of corrective actions for each critical contingency. The corrective actions can rapidly be deployed to secure the system operation in case when a critical contingency occurs. The solutions utilise optimisation methods based on detailed mathematical models of the system and operate in real-time.
The input to the WAMPAC application is the current operating point, system model data, and a list of contingencies to evaluate. The solution is modular where the first part performs a steady state contingency analysis considering line loading limits, bus voltage limits, and bus voltage stability limits based on the sensitivity indicator SZI. The second part finds the optimal corrective actions for each critical contingency by minimising the overall costs of deploying corrective actions for the operational situation evaluating a set of most effective corrective actions. The set of most effective corrective actions are chosen by sensitivity analysis which is performed as a first step in the optimisation. The developed method is integrated as an independent application into the NEWEPS Test & Demonstration platform.
The developed solutions highlight that WAMPAC solutions can enable a secure increased utilisation of the power system.
Conclusions and future outlook
The NEWEPS project represents a significant advancement for methods enabling a secure operation of the increasingly complex power system. The integration of WAMS and WAMPAC solutions within the NEWEPS Test & Demonstration platform provides a robust foundation for future enhancements and real-world applications.
The project demonstrates the potential for advanced monitoring and control systems to improve the reliability and efficiency of the power grid, paving the way for a more resilient and sustainable energy future.
This report concludes with an outlook, including a roadmap for deployment and future development towards a future Nordic WAMS & WAMPAC system.
Abstract [no]
NEWEPS-prosjektet har hatt som mål å forbedre påliteligheten og effektiviteten til det nordiske kraftsystemet gjennom utvikling og implementering av WAMS (Wide Area Monitoring System) og WAMPAC (Wide Area Monitoring, Protection, and Control). WAMS- og WAMPAC-løsninger utnytter høyoppløselige og synkroniserte visermålinger av strøm og spenning fra PMU-enheter for å gi systemoperatøren et mer nøyaktig bilde av gjeldende driftstilstand og muliggjøre automatiserte vern- og kontrollapplikasjoner.
Visjon: Arkitektur, datakvalitet og visualisering
I tillegg til de konkrete delene som er utviklet i prosjektet, har en sentral del vært å belyse viktige forutsetninger og krav til et nordisk system for WAMS og WAMPAC. De arkitektoniske perspektivene fremhever behovet for en robust og integrert tilnærming til overvåking og styring av kraftsystemet, med datakvalitet som en kritisk del av WAMS og WAMPAC. Effektive visualiseringsteknikker er også en svært viktig del som muliggjør en økt situasjonsforståelse for operatører til å ta hurtige og riktige beslutninger.
NEWEPS test- og demonstrasjonsplattform
Et av hovedbidragene til prosjektet test- og demonstrasjonsplattformen som er utviklet. Denne modulære, skalerbare plattformen er designet for prototyping av funksjonaliteten til et fremtidig nordisk system for WAMS og WAMPAC, og muliggjør testing og demonstrasjon av forskjellige WAMS- og WAMPAC-applikasjoner. PMU-datastrømmene som mates til plattformen kan lastes inn fra historiske måledata, sanntidsmålinger eller fra fiktive datastrømmer generert via simuleringsprogram eller plattformens sanntidssimulator.
WAMS-applikasjoner
Applikasjoner som er utviklet fokuserer på overvåking av spenningsstabilitet, naturlige pendlinger, og forserte pendlinger i kraftsystemet. Disse applikasjonene utnytter PMU-data for å adressere detaljer rundt systemdynamikk, og forbedrer dermed operatørens situasjonsforståelse og beslutningsevne. Applikasjonene er testet og validert på ulike måter, samt integrert i test- og demonstrasjonsplattformen.
WAMPAC-applikasjoner
Applikasjoner med et tydeligere fokus på vern og kontroll er også utviklet og validert i prosjektet, samt integrert i test- og demonstrasjonsplattformen. Utviklede løsninger har som formål å opprettholde sikker og stabil drift nåt kritiske hendelser identifiseres og passende korrigerende tiltak foreslås for hvert feiltilfelle. De korrigerende tiltakene kan raskt iverksettes for å sikre stabil drift når en kritisk hendelse oppstår. Løsningene er i stor grad basert på informasjon fra PMU-målinger og bruk av optimaliseringsmetoder basert på detaljerte modeller av systemet, som er anvendelige i sanntid.
Konklusjoner og fremtidsutsikter
NEWEPS-prosjektet representerer betydelige fremskritt innen metoder som muliggjør sikker drift av det stadig mer komplekse kraftsystemet. Evalueringen av ulike WAMS- og WAMPAC-løsninger og den utviklede plattformen er et viktig grunnlag for fremtidig utvikling og implementering.
Prosjektet har demonstrert potensialet til avanserte overvåkings- og kontrollsystemer for å forbedre påliteligheten og effektiviteten til elektrisitetssystemet, og baner vei mot en mer motstandsdyktig og bærekraftig energifremtid.
Abstract [sv]
NEWEPS-projektet har syftat till att förbättra tillförlitlighet och effektivitet av det nordiska kraftsystemet genom utveckling och implementering av WAMS (Wide Area Monitoring System) och WAMPAC (Wide Area Monitoring, Protection, and Control). WAMS- och WAMPAC-lösningar nyttjar högupplösta och detaljerade synkroniserade mätdata från PMUer för att ge systemoperatören en mer korrekt bild av det aktuella driftläget och möjliggöra automatiserade skydds- och kontrollapplikationer.
Vision: Arkitektur, datakvalitet och visualisering
Utöver de konkreta delar som utvecklats i projektet, har en central del varit att belysa viktiga beaktanden för att skapa bra grundförutsättningar för ett nordiskt system för WAMS och WAMPAC. De arkitektoniska perspektiven belyser behovet av ett robust och integrerat tillvägagångssätt för övervakning och styrning av kraftsystemet, med datakvalitet som en kritisk del av WAMS och WAMPAC. Även effektiva visualiseringstekniker är en mycket viktig del som möjliggör en ökad situationsmedvetenhet för operatörer att fatta snabba och korrekta beslut.
NEWEPS Test- & Demonstrationsplattform
Ett av projektets huvudbidrag är den utvecklade test- & demonstrationsplattformen. Denna modulära, skalbara plattform är framtagen för prototypframställning av funktionaliteter hos ett framtida nordiskt system för WAMS och WAMPAC, och möjliggör provning och demonstration av olika WAMS och WAMPAC applikationer. De PMU-dataströmmar som matas till plattformen kan läsas in från historiska mätvärden, mätvärden i realtid eller från fiktiva dataströmmar som genererats via simuleringsprogram eller plattformens realtidssimulator.
WAMS-applikationer
Applikationer med fokus på övervakning av spänningsstabilitet, naturliga oscillationer, samt forcerade svängningar har utvecklats inom projektet. Dessa applikationer utnyttjar PMU-data för att adressera detaljer kring systemets dynamik, vilket på så sätt förbättrar operatörens situationsmedvetenhet och beslutsförmåga. Applikationerna har på olika sätt testats och validerats, samt integrerats i test- & demonstrationsplattformen.
WAMPAC applikationer
Även applikationer med tydligare fokus på skydd och kontroll har utvecklats och validerats inom projektet, samt integrerats i test- & demonstrationsplattformen. Utvecklade lösningar syftar till att säkerställa bibehållen driftsäkerhet, där kritiska händelser identifieras och lämpliga korrigerande åtgärder föreslås för respektive felfall. De korrigerande åtgärderna kan snabbt appliceras för att säkra systemets drift ifall motsvarande felfall skulle inträffa. Lösningarna är baserade på PMU-data och använder optimeringsmetoder baserade på detaljerade modeller av systemet, som är tillämpbara i realtid.
Slutsatser och framtidsutsikter
NEWEPS-projektet representerar betydande framsteg för metoder som möjliggör en säker drift av det allt mer komplexa kraftsystemet. Utvärderingen av olika WAMS och WAMPAC lösningar och den utvecklade plattformen är en robust grund för framtida utveckling och implementering.
Projektet har visat på potentialen av avancerade övervaknings- och kontrollsystem för att förbättra elsystemets tillförlitlighet och effektivitet, vilket banar väg mot en mer motståndskraftig och hållbar energiframtid.
Place, publisher, year, edition, pages
RISE Research Institutes of Sweden, 2024. p. 144
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-76984 (URN)978-91-89971-97-4 (ISBN)
Projects
NEWEPS
Funder
Swedish Energy Agency
Note
This work has received funding from the Swedish Energy Agency, and the Norwegian Research Council, with additional funding provided by Statnett and Svenska kraftnät.
2025-02-022025-02-022025-02-03Bibliographically approved