Change search
Link to record
Permanent link

Direct link
Publications (10 of 19) Show all publications
Helsing, E., Brander, L. & Martinsson, P. (2024). Durability of Concrete with Recycled Aggregate. Nordic Concrete Research, 71(1), 69-89
Open this publication in new window or tab >>Durability of Concrete with Recycled Aggregate
2024 (English)In: Nordic Concrete Research, ISSN 0800-6377, Vol. 71, no 1, p. 69-89Article in journal (Refereed) Published
Abstract [en]

A demand for a more sustainable use of resources entails that recycled aggregate material need to be used in advanced applications, as in concrete. Even if regulations and standards permit the use of recycled aggregate in concrete, the amount used for this application in many countries is negligible. This caution of the potential users is partly due to the uncertainty about how recycled aggregate, from construction and demolition waste and from washed excavation masses, influence the durability of concrete, such as alkali-silica resistance (ASR), frost resistance and carbonation. Choosing a binder that mitigate damaging alkali silica reactions is an effective means to diminish the risk for damage, even with alkali-reactive recycled aggregate. However, the alkali content of crushed concrete used as aggregate must be considered. No negative effect of recycled aggregate on the carbonation of concrete was observed. The uncertainty about the influence of aggregate porosity on the frost resistance of concrete, about adequate concrete test methods, about aggregate test criteria, and about the correlation between aggregate and concrete test methods need to be settled, before porous recycled aggregate like construction and demolition waste (CDW) can be used in more demanding exposure classes with respect to frost.

Place, publisher, year, edition, pages
SCIENDO, 2024
Keywords
Recycled aggregate; CDW; durability; alkali silica reactions; carbonation; frost resistance
National Category
Environmental Engineering
Identifiers
urn:nbn:se:ri:diva-77048 (URN)10.2478/ncr-2024-0014 (DOI)
Available from: 2025-02-13 Created: 2025-02-13 Last updated: 2025-02-13Bibliographically approved
Helsing, E., Brander, L., Döse, M., Gabrielsson, I. & Lindström, C. (2023). BESTÅR – Beständig betong med återvunnen ballast.
Open this publication in new window or tab >>BESTÅR – Beständig betong med återvunnen ballast
Show others...
2023 (Swedish)Report (Other academic)
Abstract [en]

BESTÅR – Durable concrete with recycled aggregate In this project the properties of different types of recycled aggregate were investigated: recycled excavated masses, recycled construction and demolition waste (CDW), and reclaimed crushed concrete from concrete production. The content of different minerals, rocks, manmade materials, and chemical substances has been analysed, as well as the freeze-thaw resistance and alkali-silica reactivity. In addition to the testing of aggregate properties, concrete with recycled CDW was tested with respect to compressive strength, freeze-thaw resistance, carbonation resistance, and the risk for deleterious alkali silica reactions. The high water absorption of recycled CDW and reclaimed crushed concrete means that these materials can not be regarded as freeze-thaw resistant. As expected, the freeze-thaw resistance testing in salt water resulted in about five times as extensive scaling for concrete where 30% of the coarse aggregate fraction consisted of recycled CDW, as anticipated with concrete with only natural aggregates of typical igneous and metamorphic rocks. The content of potentially alkali-silica reactive particles was low in all batches (<8 %) and all batches were classified as innocuous aggregate when tested with RILEM AAR-2 and NT Build 295. When concrete with 30 % of the coarse aggregate consisting of recycled CDW and with two different binder compositions was tested, neither exceeded the maximum accepted expansion value. However, the results indicated that when the effective alkali content of the concrete is calculated, the alkali content of aggregate of recycled CDW or crushed reclaimed concrete must be included. The replacement of up to 30 % of the coarse aggregate by recycled CDW did not affect the concrete strength development, and the carbonation resistance even increased. Due to the higher water absorption of recycled CDW, it should be ascertained that all accessible pores in the aggregate are filled with water during mixing of the concrete, to avoid negative effects on the water-to-cement ratio and misleading measured air content.

Publisher
p. 83
Series
RISE Rapport ; 2023:121
Keywords
Recycled aggregate, recycled excavated masses, recycled construction and demolition waste, CDW, reclaimed crushed concrete, alkali-silica reactivity, freeze-thaw resistance, carbonation resistance, compressive strength, microscopic analysis.
National Category
Materials Engineering
Identifiers
urn:nbn:se:ri:diva-72333 (URN)978-91-89896-08-6 (ISBN)
Available from: 2024-03-15 Created: 2024-03-15 Last updated: 2024-05-22Bibliographically approved
Janssen, D., Lundgren, M., Shogren, R., Utgenannt, P. & Helsing, E. (2023). Cementitious materials limitations for concrete exposed to deicing salt plus repeated cycles of freezing and thawing. ce/papers, 6(6), 1168-1172
Open this publication in new window or tab >>Cementitious materials limitations for concrete exposed to deicing salt plus repeated cycles of freezing and thawing
Show others...
2023 (English)In: ce/papers, Vol. 6, no 6, p. 1168-1172Article in journal (Refereed) Published
Abstract [en]

Reducing the carbon footprint of concrete generally involves reducing the amount of calcium oxide in the cementitous materialsbyblending flyashand/or ground limestone into the cement or by replacing some of the cement with supplementary cementitious materials. This increasesthe ratio of SiO2+Al2O3+Fe2O3to CaO+MgO in the cementitious material.While reducing the CaOcontent of cementitious ma-terials is good for the environment, it may not be good for concrete exposed to de-icing salts plus repeatedcycles of freezing and thawing due to the effect of carbon-ation. Though carbonation can refine the pore structure when using only portland cement, it coarsens the pore structure when using high levels of cement replace-ment.This leads to increased scaling potential.A review of theeffects of different cementitious materials combinations on carbonationalong with an examina-tion offield performance ofconcrete exposed to deicing salt plus repeated cycles of freezing and thawingis used to developa relationship based on the ratio of SiO2+Al2O3+Fe2O3to CaO+MgOin order to determine when limitations on cement replacement, or additional protective measures may be needed when scaling is a concern

National Category
Materials Engineering
Identifiers
urn:nbn:se:ri:diva-70951 (URN)10.1002/cepa.2946 (DOI)
Available from: 2024-01-25 Created: 2024-01-25 Last updated: 2024-01-25Bibliographically approved
Helsing, E., Malaga, K., Suchorzewski, J. & Gabrielsson, I. (2023). Kortversion av SVU-rapport 2022:5 ”Klimatförbättrad betong för dricksvattenanläggningar”.
Open this publication in new window or tab >>Kortversion av SVU-rapport 2022:5 ”Klimatförbättrad betong för dricksvattenanläggningar”
2023 (Swedish)Report (Other academic)
Abstract [en]

This RISE report is a short version of SVU report 2022:5 “Klimatförbättrad betong för dricksvattenanläggningar” (Low carbon concrete for drinking water infrastructure). The purpose of the project was to clarify if the carbon footprint of concrete for drinking water infrastructure can be lowered by replacing Portland cement with supplementary cementitious materials (SCM) accepted for use in concrete without influencing the quality of the drinking water negatively with regard to trace substances and PAH. In addition to reviewing the literature, leaching tests and LCA analyses were conducted on thirteen concretes mixes with varying binder compositions. The results show that it is possible to replace up to 50 % of the cement with the SCMs, ground granulated blast furnace slag (GGBS), silica fume and fly ash. All this may be GGBS and up to 35 % fly ash may be used. This is valid under condition that a drinking water facility which in its entirety is new drinking goes through a tuning period of some days up to a week during which the water quality is monitored before water is delivered to clients. Leaching of some substances is somewhat increased and others are decreased by the replacement of the cement, however the changes are so small that the content in the drinking water in a real facility is only marginally influenced. Which type of binder to use should be decided based on other these materials influence on other concrete properties, for instance on the strength development. The decrease of the carbon footprint is roughly proportional to the cement replacement ratio.

Publisher
p. 19
Series
RISE Rapport ; 2023:40
Keywords
Low carbon concrete, drinking water, leaching, LCA, dangerous substances, PAH, slag, fly ash
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:ri:diva-66070 (URN)
Note

SVU-projektet har delfinansierats av Sydvatten, Stockholm Vatten och Avfall, Kretslopp och vatten Göteborg, Vatten- och avfallskompetens i Norr AB, Kommunalförbundet Norrvatten samt 4S. Därtill inkluderas i SVU-rapporten resultat från utlakningsprovningar på betong med flygaska finansierade av Heidelberg Materials (dåvarande Cementa AB) och RISE. 

Available from: 2023-08-22 Created: 2023-08-22 Last updated: 2023-08-22Bibliographically approved
Helsing, E., Malaga, K. & Ollandezos, P. (2023). Vidareutveckling av provningsmetod för klotterskyddsprodukter för betongytor.
Open this publication in new window or tab >>Vidareutveckling av provningsmetod för klotterskyddsprodukter för betongytor
2023 (Swedish)Report (Other academic)
Abstract [en]

Further development of a test method for anti-graffiti products for concrete surfaces Modified test methods for the performance of anti-graffiti coatings are presented in this report. As a base a test method applied in Sweden since is used which involves outdoor exposure of concrete slabs on which the coatings are applied followed by application of the graffiti and cleaning. The modifications are based on a review of methods existing in other countries, discussions with producers of anti-graffiti coatings and a test program carried out at RISE in Borås. The tests were carried out with two sacrificial coatings and some permanent coatings. In the latter case the graffiti is applied and cleaned ten times. In the existing method, the outdoor exposure is said to be three months. However, it was found that when this exposure takes place, in winter or in summer, greatly influenced the protective capability of the coating. In this project the influence of three different exposures were investigated; three month summer exposure, three month winter exposure and twelve month exposure. The test showed that the three-month summer exposure and the twelve-month exposure gave comparable results. Hence prolonging the exposure period is not necessary. However, very deviating results were obtained after the three-month winter exposure. The evaluation of the protective capability is started with a visual inspection against certain specified assessment criteria on remaining stains and visible marks of graffiti. If the coating met the assessment criteria for the visual inspection, assessment criteria on colour changes measured with a colour measuring device shall also be met. Separate assessment criteria for measured colour changes are used for sacrificial and for permanent anti-graffiti coatings. For a sacrificial coating, the assessment criterium is given in relation to the original concrete surface, while for a permanent coating the assessment criterium is formulated in relation to the exposed surface. It was found that the performance requirement on changes in gloss was irrelevant. In the revised method the selection of colour types and water temperature and pressure used in pressure washing has been modified to be consistent with praxis. The drying between cycles including application of graffiti and cleaning was shortened. The method is divided into two methods; one for sacrificial anti-graffiti coatings and one for permanent anti-graffiti coatings that does not require the use of chemical compounds. The latter method is not applicable to permanent anti-graffiti coatings which need the help of chemical products to give satisfactory cleaning.

Publisher
p. 91
Series
RISE Rapport ; 2023:120
Keywords
anti-graffiti coating, sacrificial, permanent, test method, assessment of protective capability, performance, concrete surfaces
National Category
Materials Engineering
Identifiers
urn:nbn:se:ri:diva-68162 (URN)978-91-89896-07-9 (ISBN)
Note

Att kunna utvärdera funktionalitet av ett klotterskydd som appliceras på en betongyta är avgörande för val av lämpliga kemiska produkter som ska ge ett skydd mot estetisk skadegörelse. Sedan 2010 har vi använt en metod som utvecklades av RISE (dåvarande CBI Betonginstitutet) för både offerskydd och permanenta skydd. Under 2022-2023 fick RISE i uppdrag att verifiera den befintliga testmetoden som finns i AMA Anläggning och komma med förslag till modifieringar av provning- och utvärderingsproceduren. RISE, Trafikverket och ett antal representanter för klotterskyddproducenter fick möjlighet till att diskutera och lämna synpunkter på själva metoden och branschens utmaningar. Metoden har anpassats till praxis och beskrivs i den här rapporten.

Fulltextfilen är uppdaterad 2023-12-13.

Available from: 2023-12-05 Created: 2023-12-05 Last updated: 2024-03-04Bibliographically approved
Malaga, K., Helsing, E. & Utgenannt, P. (2022). Kartläggning av befintlig provningsverksamhet för cement och betong i Sverige och bedömning av provningsbehov vid introduktion av nya cement.
Open this publication in new window or tab >>Kartläggning av befintlig provningsverksamhet för cement och betong i Sverige och bedömning av provningsbehov vid introduktion av nya cement
2022 (Swedish)Report (Other academic)
Abstract [sv]

Rapporten presenterar resultat från projektet ‘Kartläggning av befintlig provnings-verksamhet för cement och betong i Sverige och bedömning av provningsbehov vid introduktion av nya cement’. Mot bakgrund av en minskad eller stoppad produktion av cement vid Cementas fabrik i Slite gav Regeringen Verket för innovationssystem (VINNOVA) den 3 november 2021 i uppdrag att kartlägga befintlig provningsverksamhet för cement och betong (N2021/02773) som finns tillgänglig för svenska aktörer och att föreslå åtgärder som kan skapa förutsättningar för en samordning vid en kraftigt ökad efterfrågan på denna verksamhet. Denna rapport behandlar hur provningsbehovet kan komma att utvecklas vid stopp i den svenska cementproduktionen i Slite vilket resulterar i ett behov av introduktion av stora volymer av ett eller flera nya cement under kort tid. Denna händelse benämns i rapporten förenklat som “cementkris”. Rapporten pekar på några förutsättningar som bör gälla för att ett cementbyte skall kunna genomföras rimligt kontrollerat. I rapporten görs det inte någon bedömning av hur byggbranschen eller samhället i stort skulle påverkas av en cementkris. Det görs inte heller någon analys av vem som tillser att produktions-bortfallet från Slite ersätts med annat cement eller varifrån detta cement kan komma. För en bedömning av provningsbehovet av betong har detta inte någon avgörande betydelse. Ett nytt cement från Kina kräver för betongtillverkaren lika mycket provning som ett nytt cement från närområdet i Europa eller för den delen Sverige. Förutsatt att cementet i sig är CE-märkt och uppfyller svenska krav.

Den huvudsakliga slutsatsen är att: Under förutsättning att inte avkall får göras på de krav som ställs på cement och betong i Sverige idag krävs det att nu använda och nya cement finns tillgängliga parallellt under en övergångsperiod på minst två och ett halvt år. Detta gäller främst betong till anläggningskonstruktioner och infrastrukturprojekt där kraven på kvalitetssäkring via provning på ackrediterade laboratorier är hög. På grund av ökat provningsbehov går det inte att genomföra ett omfattande byte av cement på ett stort antal betongfabriker under kort tid utan betydande störningar och stopp i betongleveranser till svenska byggarbetsplatser, om inte nu använda och nya cement finns tillgängliga parallellt. Inom husbyggnadsområdet är behoven av provning på ackrediterade laboratorier lägre. Hur snabbt och smidigt ett byte av cement kan göras för husbyggnadsbetong avgörs i stället av möjligheterna att utföra nödvändiga interna provningar och intrimningar på fabrikerna.

Om nu använda och nya cement till anläggningsbyggandet finns tillgängliga parallellt under minst två och ett halvt år är bedömningen att nödvändig ökning av provnings-kapacitet hinner byggas upp samtidigt som ett byte från nu använda till nya cement kan göras på ett rimligt kontrollerat sätt med avseende på behovet av extern provning. Detta förutsätter emellertid att samtliga nya cement är CE-märkta och uppfyller svenska krav samt en samordning av provningskapaciteten inom vissa kritiska provnings-områden. För att öka provningskapaciteten på nationell nivå inom kritiska provnings-områden krävs en noggrann planering av hur en sådan utökning skall genomföras (lokaler, utrustning, kompetens, vem som skall vara huvudman) och vem som skall bekosta en sådan ökning av provningskapaciteten.

Publisher
p. 60
Series
RISE Rapport ; 2022:12
National Category
Environmental Sciences
Identifiers
urn:nbn:se:ri:diva-58487 (URN)978-91-89561-27-4 (ISBN)
Available from: 2022-02-07 Created: 2022-02-07 Last updated: 2023-05-23Bibliographically approved
Hasholt, M. T., Frid, K., Spörel, F., Lahdensivu, J., Helsing, E., Müller, M., . . . Jacobsen, S. (2022). Nordic Concrete Research workshop: “Accelerated freeze-thaw testing of concrete”, Lyngby, 20th April 2022. Paper presented at Nordic Concrete Research workshop: “Accelerated freeze-thaw testing of concrete”, Lyngby, 20th April 2022. Nordic Concrete Research, 66(1), 113-133
Open this publication in new window or tab >>Nordic Concrete Research workshop: “Accelerated freeze-thaw testing of concrete”, Lyngby, 20th April 2022
Show others...
2022 (English)In: Nordic Concrete Research, Vol. 66, no 1, p. 113-133Article in journal (Refereed) Published
Abstract [en]

 A one-day Nordic Concrete Research workshop on “Accelerated freeze-thaw testing of concrete” attracted approx. 30 participants. The workshop included presentations on various aspects, such as observed frost damage in the field and the importance of the temperature curve during testing as well as other interactions with the surroundings of the concrete. The workshop also included examples of recent research, which can improve our knowledge about the frost damage mechanism and therefore provide input to improving the standardised test methods. The present paper is a summary of the nine presentations and the discussion arising from the presentations.

National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-63396 (URN)10.2478/ncr-2022-0007 (DOI)
Conference
Nordic Concrete Research workshop: “Accelerated freeze-thaw testing of concrete”, Lyngby, 20th April 2022
Available from: 2023-01-30 Created: 2023-01-30 Last updated: 2023-05-16Bibliographically approved
Helsing, E. (2021). Redistribution of chlorides in concrete specimens occurring during storage. Materials and Structures, 54(3), Article ID 105.
Open this publication in new window or tab >>Redistribution of chlorides in concrete specimens occurring during storage
2021 (English)In: Materials and Structures, ISSN 1359-5997, E-ISSN 1871-6873, Vol. 54, no 3, article id 105Article in journal (Refereed) Published
Abstract [en]

It has been observed that storage of specimens with chloride gradients before determining the chloride profile can lead to changes in the shape of the chloride profile. An experimental study to quantify the influence of the duration of the storage period and the storage temperature has been carried out. It comprised three storage periods (7, 28 and 91 days) and two storage temperatures (+ 5 °C and + 20 °C). The specimens had previously been immersed in a 15% NaCl solution for 56 days and were sealed in plastics during storage. The results show that a temperature of + 5 °C diminishes the rate of redistribution considerably, compared to a storage carried out at + 20 °C, and the longer the storage period is, the more redistribution will take place. It is also shown that it is of importance to assure that the sealing of the specimens during storage is capable of maintaining the relative humidity at the surface, so that local redistribution of chlorides close to the surface will not take place. © 2021, The Author(s).

Place, publisher, year, edition, pages
Springer Science and Business Media B.V., 2021
Keywords
Chloride concentration, Chloride content, Chloride ingress, Chloride profile, Concrete, Redistribution, Sodium chloride, Chloride profiles, Concrete specimens, NaCl solution, Storage periods, Storage temperatures, Concretes
National Category
Building Technologies
Identifiers
urn:nbn:se:ri:diva-53045 (URN)10.1617/s11527-021-01704-y (DOI)2-s2.0-85104889475 (Scopus ID)
Note

 Funding text 1: Open access funding provided by RISE Research Institutes of Sweden. This study was financed by RISE, with no external funding.

Available from: 2021-05-25 Created: 2021-05-25 Last updated: 2023-05-16Bibliographically approved
Brander, L., Helsing, E. & Gabrielsson, I. (2020). Constructivate arbetspaket 3: Återvinning av rivningsavfall som ballast i betong.
Open this publication in new window or tab >>Constructivate arbetspaket 3: Återvinning av rivningsavfall som ballast i betong
2020 (Swedish)Report (Other academic)
Abstract [sv]

Bygg- och rivningsavfall utgör en av de största avfallsströmmarna i Sverige, samtidigt som den återvinning som sker sträcker sig till tillämpningar med relativt låga kvalitetskrav (downcycling). Sannolikt finns potential till att återanvända rivningsavfall i tillämpningar av högre status, till exempel i ny betong eller i delar av vägkropp där kvalitetskraven är högre.

Syftet med denna rapport är att undersöka vilka regler och kvalitetskrav som finns för återvinning av den mineraliska materialfraktionen i rivningsavfall. Fokus har varit på hur denna fraktion måste vara beskaffad för att klara kvalitetskrav som ballast till vägbyggnad och ny betong.

För vägbyggnad finns ett klassificeringssystem i den europeiska standarden SS-EN 13242 (Ballast för obundna och hydrauliskt bundna material för användning i anläggningsarbeten och vägbyggen) och i Trafikverkets kravdokument TDOK 2013:0532 (Alternativa material för vägkonstruktioner). Kvalitetsklassningen sker på basis av fraktionens sammansättning med avseende på ingående materialslag, där Klass 1 (högsta klassen) i princip bara innehåller krossad betong, murverk och obunden sten, medan det i lägre klasser (i ordningen 2, 3 och 4) accepteras stigande inslag av kvalitetssänkande material (tex metaller, plast, trä, lättviktsbetong). För viss klass måste dessutom tekniska krav uppfyllas, uttryckta i termer av motstånd mot nötning eller tryckhållfasthet. TDOK 2013:0532 anger vidare vilken kvalitetsklass som krävs för olika delar av vägkropp: Klass 1 eller 2 för Förstärkningslager till belagda vägar och Bärlager till belagda vägar, minst Klass 3 för Skyddslager till belagda vägar, samt minst Klass 4 för Underbyggnad och övriga fyllningar.

För användning som betongballast krävs enligt SS 137003, vilket är den svenska tillämpningen till den europeiska betongstandarden SS-EN 206, att den återvunna ballasten karaktäriseras och klassificeras. Klassificeringen sker helt enligt standarden för betongballast (SS-EN 12620) och bygger likt systemet för användning som vägballast på innehåll och halter av ren betong och andra materialslag i den återvunna ballasten. Här är klasserna i nuläget endast två: Typ A och Typ B, där den förra är den högre (och renare) klassen. Eftersom SS-EN 12620 är harmoniserad ska återvunnen ballast till och med CE-märkas. CE-märkningen sker på samma sätt och med samma system som för primär/jungfrulig ballast, med några skillnader så som att analys av sammansättning med avseende på materialslag måste göras, samt att dokumentation och spårbarhet till rivningsprojekt måste finnas i kvalitetssystemet.

Det står helt klart att hur användbar den mineraliska fraktionen från bygg- och rivningsavfall är beror på dess renhet, dvs. hur väl man lyckats hålla isär olika avfallsfraktioner. Generellt innehåller inte den krossade betongen i sig ämnen som kan vara skadliga för människa eller miljö; dessa finns snarare i andra materialslag som kan finnas ihop med betong i rivningsavfall. Under vissa perioder har man vid byggande av hus använt material som senare visat sig orsaka hälsoproblem och förbjudits. Exempel på sådana är ”blåbetong” (lättbetong baserad på uranrik alunskiffer) och byggprodukter med asbestcement och PCB-haltiga massor. Förekomst av dessa material i en byggnad som ska rivas måste inventeras och saneras och/eller hanteras på ett säkert sätt. Gynnsamt är förstås om man redan i rivningsskedet har kunnat separera de olika komponenterna, men även ett relativt blandat avfall kan separeras och sorteras mer eller mindre effektivt i efterhand. Moderna återvinningsanläggningar använder olika tekniker för att få ut rena(re) materialfraktioner från blandat avfall. Ofta involverar dessa tekniker flera steg av krossning, torr- och våtsållning, siktning, tvättning med högtrycksvatten och pressning av slam till kaka, i vilken oftast eventuella lakbara ämnen ansamlas.

Tekniskt och miljömässigt är det fullt möjligt att återvinna rivningsavfall som ballast i ny betong och vägbyggnad, men idag sker detta alltså i mycket liten eller tom obefintlig utsträckning. Ett antal åtgärder med potential påverka i riktning att sådan återvinning ökar är:

• Ta fram nationella End-of-Waste-kriterier för rivningsavfall, till exempel enligt brittisk modell. Ökar tydlighet för alla aktörer och minskar osäkerhet i tillståndsprövningen.

• Gör livscykelperspektivet till ett starkt kriterium i offentlig upphandling, det vill säga att man får bonuspoäng utifrån detta samtidigt som det naturligtvis inte styr helt. Dessutom måste en LCA-bedömning ta hänsyn inte bara till CO2-ekvivalenter utan också andra miljöparametrar.

• Sprid och förankra bäst praxis till kommunerna/beställarna, till exempel kring vilka sekundära material som enligt forskning och beprövad erfarenhet kan användas på vilket sätt och hur, så att krav kan ställas i upphandlingar.

• Sprid kunskap och sök påverka Naturvårdsverket vad gäller riktlinjerna (och handboken) som stöd till kommuner och andra tillsynsmyndigheter, att krav bör ställas på lakbarhet och biotillgänglighet vad gäller olika ämnen, snarare än totalhalter (som kan vara hårt bundna och därmed inerta).

• Sortering för högre teknisk funktion. Om avfallsfraktionerna hålls isär och så rena som möjligt, så ökar möjlighet för återvinning avsevärt (dvs. recycling, inte downcycling), vad gäller såväl teknisk prestanda som minskad risk för miljö och människa.

Publisher
p. 42
Series
RISE Rapport ; 2020:25
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-45113 (URN)978-91-89167-06-3 (ISBN)
Available from: 2020-06-17 Created: 2020-06-17 Last updated: 2023-12-27
Helsing, E. (2020). Nedbrytning hos betong med slagg och flygaska efter fyra vintersäsonger vid RV40.
Open this publication in new window or tab >>Nedbrytning hos betong med slagg och flygaska efter fyra vintersäsonger vid RV40
2020 (Swedish)Report (Other academic)
Abstract [sv]

I detta projekt kartläggs de förändringar i provkroppar av betong med tillsats av främst slagg och flygaska som har uppkommit efter fyra vintersäsongers exponering vid RV40 i Borås. Dessa förändringar jämförs med resultat från laboratorieprovningar på provkroppar härdade på olika sätt i laboratoriet av samma betongblandningar utförda eller påbörjade inom de första 91 dygnen från gjutning. Vissa andra egenskaper har också studerats i avsikt att kasta ljus på den yttre eller inre nedbrytning som skett i fält.

De provkroppar som undersökts tillverkades inom BBT-projektet 2013:22 "Saltfrost-provningsmetodens tillämplighet på betong innehållande slagg, flygaska och kalkstensfiller" vilket redovisats i [1]. Det främsta syftet med det projektet var att undersöka om salt-frostprovningsmetoden i SS 137244 [2] ("slab method" i CEN TS 12390-9 [3]) ger resultat som motsvarar den nedbrytning som erhålls vid verklig salt-frostexponering för blandningar med tillsatsmaterial som slagg och flygaska, eller om modifieringar av metoden krävs.

I detta projekt har samtliga provkroppar (fyra per vardera av de 14 blandningarna) som fältexponerats vägts och mätts. Dynamisk E-modul beräknad utifrån uppmätt egenfrekvens och ultraljud har också registrerats på dessa. Tre av de fyra provkropparna har därefter återförts till RV40 för framtida undersökningar, medan en provkropp per blandning har undersökts närmare vad gäller karbonatiseringsdjup, kloridinträngning, förekomst av mikrosprickor, förändringar i ytan samt fördelning av vissa grundämnen i provkropparna. Resultaten har jämförts med de laboratorieresultat som erhölls inom BBT-projektet 2013:22 och med fältresultat efter fyra år från ett annat projekt med liknande inriktning [4].

Mätresultaten visar att fyra års exponering i en miljö med saltning inte är tillräcklig tid för att kunna utläsa en betongs motstånd mot salt-frostavflagning genom att registrera ändring i massa eller volym hos provkroppar. Under de första åren i en fuktig miljö sker en fortskridande hydratisering som binder ytterligare vatten kemiskt, och ökar provkroppens densitet. Detta gäller i synnerhet för betongblandningar med flygaska och viss mån även betong med slagg som har en långsammare reaktionshastighet och strukturutveckling initialt än vad en ren portlandcementbetong har. Det är inte förrän efter åtminstone ett års exponering, då hydratiseringen och hållfasthetsutvecklingen avstannat helt eller nästan, som förändringar i vikt eller massa kan börja relateras till yttre nedbrytning. Efter fyra års exponering av provkropparna har det heller inte skett någon klart märkbar förändring av den exponerade ytan, inte ens hos de betongblandningar som inte innehåller tillsatt luft.

De fortgående reaktionerna påverkar även den uppmätta egenfrekvensen och transmissionstiden, som återspeglar förändringar i dynamisk E-modul och den inre nedbrytningen. När det gäller den inre nedbrytningen mätt genom registrering av egenfrekvens (RDMFF) fås dock betydligt mer utslagsgivande resultat efter fyra år i fält än vad registrering av massa och volym ger. Provkroppar från två blandningar uppvisar en betydande minskning, ner till c:a 60 % av ursprunglig E-modul: en med 20% flygaska utan luftporbildare (A20FU) och en med 35% slagg och luftporbildare (R35S). A20FU uppvisade också stark avflagning då betongblandningarna provades enligt SS 137244 [2], medan R35S då inte visade några tecken på nedbrytning. Ett par andra blandningar, en med 20 % slagg utan luftporbildare och en med 65 % slagg med luftporbildare visade en klar tendens till inre nedbrytning både i fältförsöket och vid salt-frostprovningen. För vissa blandningar uppvisar en av de fyra provkropparna betydande nedbrytning mätt med egenfrekvens efter fyra år, men inte de övriga tre, alla med minst 20 % flygaska eller slagg. Av dessa var det bara en som visade tendens till nedbrytning vid den initiala salt-frostprovningen.

Mätning av inre nedbrytning gjordes dels med registrering av egenfrekvens dels med registrering av transmissionstid (UPTT), och resultaten korrelerar ganska väl med varandra, med ett par undantag. När det gäller den blandning (R35S), som vid egenfrekvensmätningen uppvisade stor nedbrytning, så återspeglas inte det i UPTT-värdena. Mätvärdet för R65S med UPTT indikerar en större nedbrytning än mätvärdet med egenfrekvens.

Den mikroskopiska undersökning visade att i provet utan luftporbildare som visade stor inre nedbrytning (A20FU) var sprickfrekvensen hög, och sprickorna som utgick från kanten av ballastkornen vek av ut i cementpastan och hade en betydande längd (40-50 mm) och bredd. I vissa fall har det bildats en luftspalt mellan ballastkorn och cementpasta. I övriga prover förekom det fina mikrosprickor, främst vid kanten av ballastkornen, som inte bedömdes påverka betongens egenskaper nämnvärt.

I proverna med slagg och luftporbildare som också uppvisar en klart märkbar inre nedbrytning (R35S och R65S), noteras också en ganska hög sprickfrekvens. Men mer slående är att de har en genomgående dålig fördelning av luftporerna, vilka tenderar att ansamlas runt ballastkorn. Detta är troligtvis en avgörande faktor för det dåliga motståndet mot inre nedbrytning. Detta skulle kunna bero på ett olämpligt val av luftporbildare för den aktuella bindemedelssammansättningen (CEM I 52,5 R och 35 respektive 65 % slagg). Provet med CEM I 42,5N-SR3 LA/MH och 35% slagg (A35S) uppvisar inte samma inre nedbrytning. Denna har dock inte analyserats med mikroskopi. Generellt konstaterades i [1] att luftporbildare inte har samma positiva inverkan på frostresistensen när större mängder slagg ingår som i blandningar utan slagg. I blandningar med flygaska är de däremot av stor vikt för frostbeständigheten.

I proverna med flygaska noterades vid den mikroskopiska analysen reaktionsprodukter, troligtvis ettringit, i luftporerna vilket kan ha bidragit till en sämre frostbeständigheten genom att luftporernas funktion försämras. Detta kan påverka både den inre frostbeständigheten och salt-frostavflagningen. Ettringit som bildas när betongen har hårdnat kan också ge upphov till skador p.g.a. svällning vid försenad ettringitbildning, se till exempel avsnitt 2.7.2 i [5].

Kloridprofiler från den sågade överytan och inåt i fältprovkropparna togs fram med två olika metoder. På några provkroppar användes titrering och på några användes μ-XRF. Titreringen gjordes ner till 25 mm djup, medan μ-XRF gav profilen ner till 60 mm djup.

När flygaska används fås en större kloridinträngning efter 4–5 års exponering vid RV40 i skiktet ner till ca 20 mm djup, och ju högre andel flygaska desto längre in från ytan återfinns den punkt där halten klorid är som störst. Däremot blir kloridhalten lägre längre in i provkroppen med flygaska än utan.

Med slagg i blandningen minskar kloridinträngningen. I detta projekt är motståndet mot kloridinträngning när ett CEM I 52,5 R ("R-cement") används som störst med 35 % slagg och när ett CEM I 42,5 N SR3/LA/MH ("A-cement") används med 20 % slagg. I blandningen med R-cement och 65% slagg (R65S) har en betydligt större kloridinträngning och fluktuerande kloridprofil uppmätts än i blandningen med 35 % slagg (R35S). Detta kan bero på den mycket ojämna och dåliga luftporfördelningen i denna provkropp, med ansamling av luftporer vid ballastkorn, vilket kan öka permeabiliteten för klorider.

En viktig frågeställning i BBT-projektet 2013:22 [1] var att kartlägga karbonatiseringens inverkan på salt-frostbeständigheten och eventuellt modifiera den använda salt-frostprovningsmetoden så att denna inverkan beaktades. I det projektet accelererades karbonatiseringen därför dels genom att utsätta provytan för 1 % CO2 en vecka innan frysprovningen startades, och dels genom att låta provytan exponeras för 65% RF och normal laboratorieluft under tre månader innan frysprovningen. Genom mätning av karbonatiseringsdjupet på fältproverna konstaterades att för att simulera 4-5 års naturlig karbonatisering i vägmiljö, med resultat på säker sida, borde provkropparna sågas vid c:a 60 dygn och därefter utsättas för 1 % CO2. Att utsätta provkropparna för koldioxid vi 21 dygns ålder ger större karbonatiseringsdjup än efter 4 -5 års fältexponering. Dock måste man ha i åtanke att 4–5 år är en kort tid i förhållande till en betongkonstruktions livslängd som kan vara upp till 120 år eller längre. Vilken koldioxidexponering som bäst motsvarar karbonatiseringen på lång sikt, och i vilken mån det är relevant för frostbeständigheten kommer att framgå av framtida undersökningar av de fältexponerade provkropparna.

Karbonatiseringsdjupet ökade ju högre andel av portlandcementklinkern som ersattes med flygaska eller slagg, proportionellt sett mest med flygaska. Det mer finkorniga R-cementet gav något mindre karbonatiseringsdjup A-cementet. Tillsättning av luftporbildare ger något högre karbonatiseringsdjup än utan.

Angreppet på en betongyta vid en trafikerad väg består inte bara av temperatur-variationer och exponering för klorider. Där ingår också omväxlande perioder med vatten i form av regn, spolning eller skvätt från vägbana och torra perioder vilket kan leda till urlakning av lättlösliga ämnen i betongytan.

Halten av alkalierna natrium och kalium är starkt reducerad i ytskiktet, och en gradient har uppstått i provkroppen. Det natrium som tillförs genom saltning ersätter inte de alkalier som fanns i cementet från början och som lakats ut i de yttersta millimetrarna.

Någon urlakning av kalcium verkar däremot inte ha uppstått efter 4–5 års exponering.

I blandningarna med flygaska visas tecken på urlakning av aluminium (Al), och i blandningarna med 65 % slagg har magnesium (Mg) urlakats. Samtidigt har i dessa blandningar svavel urlakats, vilket tyder på att det är sulfater innehållande Al och Mg som urlakats.

Publisher
p. 62
Series
RISE Rapport ; 2020:40
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-49488 (URN)978-91-89167-22-3 (ISBN)
Available from: 2020-10-19 Created: 2020-10-19 Last updated: 2023-05-16
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-0230-2200

Search in DiVA

Show all publications