Change search
Link to record
Permanent link

Direct link
Publications (7 of 7) Show all publications
van Noord, M., Kovacs, P., Karltorp, K. & Vroon, T. (2023). Guide for Technological Innovation System Analysis for Building-Integrated Photovoltaics 2023. International Energy Agency (IEA)
Open this publication in new window or tab >>Guide for Technological Innovation System Analysis for Building-Integrated Photovoltaics 2023
2023 (English)Report (Other academic)
Abstract [en]

This Guide for Technological Innovation System (TIS) Analysis for Building-Integrated Photovoltaics offers hands-on support on theory and methods for those who want to analyse the innovation system for BIPV in their country. It describes the general process steps to perform a TIS analysis and the specific choices and methods used by Subtask A of IEA PVPS Task 15. In this way it allows for future TIS-analyses to be made in a comparable way to the national studies published by Task 15, either by covering new countries or by timely updates of the TIS in the same countries. Apart from being a guidebook for the analyser, this document can also be used as a template for a final TIS-analysis report – using the same (sub-)chapters, tables, and graphs. The initial definition of the common scope of the TIS studied consists of Building Integrated PV modules and systems as well as PV modules and systems for aesthetical integration. Where relevant, national studies can adjust or deepen the scope by separately analysing different market segments or by excluding certain sub-technologies or application types. The latter can be relevant for example due to cultural or historical reasons. Starting from the scope defined, this guide describes how to analyse and describe the structure of the TIS, through its actors, networks, and institutions (regulations, cultural norms, etc.). Based on that structure and the market situation, an assessment is to be made of the market development phase for BIPV in general or for different application types. Next, a development target should be defined so that the current TIS can be evaluated in relation to that target. The main part of the TIS-analysis is performed after defining the target, by analysing the performance of eight functions of the TIS: Knowledge development, Knowledge dissemination, Entrepreneurial experimentation, Resource mobilization, Development of social capital, Legitimation, Guidance of the search, and Market formation. The meaning of each function is explained and key indicators, as well as assessment questions, are listed. These indicators and questions assist the reader in her/his assessment of whether the function is sufficiently fulfilled for the TIS to achieve the set target. For those functions that are not fulfilling the target requirements, guidance is given on how to identify systemic problems that either relate to actors, institutions (hard and soft), interaction between actors, or to infrastructural deficits. Finally, the guide describes the need of, and some advice on how to arrive at recommendations for a possible overcoming of problems and weaknesses in order to reach the set target. Recommendations should address both industry actors and policy makers.

Place, publisher, year, edition, pages
International Energy Agency (IEA), 2023. p. 62
Series
IEA-PVPS T15-16:2023
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-71487 (URN)978-3-907281-40-6 (ISBN)
Note

INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Available from: 2024-01-26 Created: 2024-01-26 Last updated: 2024-01-26
Warneryd, M. & Karltorp, K. (2022). Microgrid communities: disclosing the path to future system-active communities. Sustainable Futures, 4, Article ID 100079.
Open this publication in new window or tab >>Microgrid communities: disclosing the path to future system-active communities
2022 (English)In: Sustainable Futures, E-ISSN 2666-1888, Vol. 4, article id 100079Article in journal (Refereed) Published
Abstract [en]

To increase sustainability in future energy systems, both technical and social measures must be taken. Microgrid communities offer local balancing of supply and demand, while also integrating the community as an active part of the energy system. This study investigates two cases of microgrid communities; how they were realized and what wider effects they offered its communities and other stakeholders. The study shows that the microgrid collaboration between community and utility offers a new organizational division that can overcome the traditional locked-in position of the utility. This brings forward communities as system-active participants and a sustainably beneficial energy system for the future. © 2022 The Author(s)

Place, publisher, year, edition, pages
Elsevier Ltd, 2022
Keywords
Energy community, Microgrid, Resilience, Socio-technical change, Sustainable transition
National Category
Information Systems, Social aspects
Identifiers
urn:nbn:se:ri:diva-59340 (URN)10.1016/j.sftr.2022.100079 (DOI)2-s2.0-85130716503 (Scopus ID)
Note

Funding details: Energimyndigheten, 43272-1; Funding details: Högskolan Dalarna, DU; Funding text 1: The authors would like to thank the Swedish Energy Agency for funding the study within the research project ‘Solar-based microgrids-a potential for the future? [project no. 43272-1]. We are also grateful to Ewa Wäckelgård at Dalarna University, Eva Thorin at Mälardalen University and Joni Rossi at RISE, for commenting on earlier versions of the article.; Funding text 2: The authors would like to thank the Swedish Energy Agency for funding the study within the research project ‘Solar-based microgrids-a potential for the future? [project no. 43272-1]. We are also grateful to Ewa Wäckelgård at Dalarna University, Eva Thorin at Mälardalen University and Joni Rossi at RISE, for commenting on earlier versions of the article.

Available from: 2022-06-14 Created: 2022-06-14 Last updated: 2023-05-25Bibliographically approved
Warneryd, M. & Karltorp, K. (2020). The role of values for niche expansion: The case of solar photovoltaics on large buildings in Sweden. Energy, Sustainability and Society, 10(1), Article ID 7.
Open this publication in new window or tab >>The role of values for niche expansion: The case of solar photovoltaics on large buildings in Sweden
2020 (English)In: Energy, Sustainability and Society, E-ISSN 2192-0567, Vol. 10, no 1, article id 7Article in journal (Refereed) Published
Abstract [en]

Background: Solar photovoltaic (PV) plants can contribute to the transformation of the electricity system in Sweden not only by adding capacity, but also by forming new decentralized ownership structures and involving new actors. This article focuses on solar PV plants on larger buildings, which represent a significant share of the installed capacity (although the total capacity is still very low in Sweden) and which have a good future potential. We are interested in the reasons owners of large buildings have for investing in solar PV plants, despite the fact that they face a complex regulatory situation. The aim of this paper is, therefore, to identify added values from solar PV plants for large buildings and to see how these values contribute to the ongoing expansion of the solar PV niche in Sweden. We use sustainability transitions as the theoretical point of departure and focus particularly on the role of values in an expanding niche. Data was collected via 15 semi-structured interviews, mainly with large building owners. It provides an interesting empirical case of the pioneers within the actor group of large building owners who potentially can play an important role in the expansion of solar PV technology in Sweden. Theoretically, the article contributes to the sustainable transition research field by demonstrating how values are developed and affect the niche-regime interplay. Results: The findings demonstrate that owning a solar PV plant adds values such as sustainability, fair cost, and induced innovativeness. These values have an effect on niche expansion by contributing for example to the development of a social network, new role development, positive niche narrative, and niche empowerment. Conclusions: We conclude that the broad set of values added by solar PV plants on large buildings increases the desire and enhances the positive experience to take on a new role development. Furthermore, we conclude that added values contribute to developing a social identity which is important when expanding the social network around the niche. Finally, we conclude that added values shape the positive niche narrative among niche advocates and give direction for policy development related to the niche. © 2020 The Author(s).

Place, publisher, year, edition, pages
BioMed Central Ltd., 2020
Keywords
Large buildings, Niche expansion, Solar photovoltaics, Sustainability transition, Values, Buildings, Expansion, Solar concentrators, Sustainable development, Ownership structure, Positive experiences, Semi structured interviews, Theoretical points, Solar power generation, building, photovoltaic system, policy development, social network, solar power, sustainability, Sweden
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-44449 (URN)10.1186/s13705-020-0239-7 (DOI)2-s2.0-85081112052 (Scopus ID)
Note

Funding text 1: The authors would like to thank the region of Västra Götaland for funding the project. We are also grateful to Anna Bergek, Ewa Wäckelgård, and participants in the REESBE school for industrial PhD for commenting on the manuscripts for the article, as well as the comments from three anonymous reviewers which greatly contributed to its improvement and, finally, a special thanks to all interviewees who contributed with their experiences and expertise from owning or working with solar PV.; Funding text 2: This research project was funded by the region of Västra Götaland, within the larger project of “Soligt och Smart MN 2016-00143”. Open access funding provided by Dalarna University.

Available from: 2020-03-17 Created: 2020-03-17 Last updated: 2024-02-23Bibliographically approved
Warneryd, M., Håkansson, M. & Karltorp, K. (2020). Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids. Renewable & sustainable energy reviews, 121, Article ID 109690.
Open this publication in new window or tab >>Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids
2020 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 121, article id 109690Article in journal (Refereed) Published
Abstract [en]

Community microgrids implemented in existing electricity grids can meet both development targets set out in the Paris agreement: 1. mitigate greenhouse gas emissions through increased implementation of renewable energy sources, and 2. to adapt to climate related disturbances and risk of catastrophes. Community microgrids are, however, complex to implement and institutional change is needed to reach their full potential. The purpose of this article is to review existing literature and analyze institutional developments influencing the growth of community microgrids. The literature describes a concentration of microgrid activities in specific regions: USA, EU, Asia and Australia. Varying reasons for implementing community microgrids were found in the different regions but similar institutional developments occurred, albeit with differing emphasis due to contextual specificities. Formal directions do however influence informal institutions even though their aims differ. Power utilities stand out as a critical actor and both formal and informal institutions put pressure on utilities to update their traditional business models. This article illustrates how informal and formal institutions play a significant role in the growth of community microgrids in existing electricity grids and provide interesting examples which can be utilized by policymakers. Microgrid development is still in a formative phase and further institutional change in the form of updated regulations is needed. © 2020 The Authors

Place, publisher, year, edition, pages
Elsevier Ltd, 2020
Keywords
Community energy, Community microgrid, Energy system transformation, Microgrid, Socio-technical change, Sustainability transition, Gas emissions, Greenhouse gases, Renewable energy resources, Micro grid, Socio-technical changes, Electric power transmission networks
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-43357 (URN)10.1016/j.rser.2019.109690 (DOI)2-s2.0-85077921856 (Scopus ID)
Note

Funding details: New Energy and Industrial Technology Development Organization, NEDO; Funding details: Energimyndigheten; Funding details: Ministry of National Development - Singapore, MND; Funding details: Ministry of the Environment and Water Resources - Singapore, MEWR; Funding details: Samsung; Funding details: Centre of Excellence in Plant Energy Biology, Australian Research Council, PEB; Funding details: National Development and Reform Commission, NDRC; Funding details: Curtin University of Technology; Funding details: Neelan Tiruchelvam Trust, NTT; Funding details: Chinese Academy of Sciences, CAS; Funding details: Ministry of Economic Affairs, MOEA; Funding details: City, University of London, City; Funding details: Ministry of Trade, Industry and Energy, MOTIE; Funding details: European Commission, EU; Funding text 1: Japan has been the early leader in MG research in Asia, but in recent years South Korea, Singapore and China have been increasingly expanding their MG development [ 148 ]. In Japan, the New Energy and Industrial Technology Development Organization (NEDO) is a key actor which has been funding several demonstration projects including the Sendai MG. This was created from a network involving NEDO as funding agency in collaboration with research actors and the City of Sendai local government which were the driving actors in developing and maintaining the MG [ 148 ]. This local city support proved particularly valuable in helping to ‘ sidestep [utility] regulation ’ [ 148 ]. Both south Korea and Taiwan has a history of government-business driven initiatives. In recent years, these collaborations between private actors and government have been promoting smart MGs, viewing this as a future competitive positioning of domestic actors. Important actors include Ministry for Trade, Industry and Energy (MOTIE) in Korea and Ministry of Economic Affairs (MOEA) in Taiwan. Thus, private actors in these countries, are connected with the government and shaped by strategic initiatives and governmental visions [ 150 ]. Numerous state actors in China influence MG development, see Refs. [ 146 , 148 ] and Appendix D for specific examples. In general, most MG initiatives in China are state driven suggesting for instance that MGs are able to enhance grid capacity in already densely populated and yet rapidly growing cities which provides one direction for actors in the domain. Formal, top-down approval of MGs to help integrate renewable energy in dense cities has potential to stimulate fast development. In Singapore, the government through different ministries has played an important role in formulating strategies and goals for more sustainable development, including clean energy [ 149 ]. Among others, it resulted in the Singapore Sustainable Development Blueprint released in 2009, which outlines targets for the next 10–20 years. The Singapore Agency for Science, Technology, and Research (A*STAR) has been involved in MG testing [ 149 ]. 5.4.2; Funding text 2: The authors would like to thank the Swedish Energy Agency for funding the study within the research project ‘Solar-based microgrids-a potential for the future? [Project no. 43272-1 ]. We would also like to thank the two anonymous reviewers which greatly contributed to improving earlier versions of this article. We are also grateful to Ewa Wäckelgård at Dalarna University for commenting on earlier versions of the article. Appendix A; Funding text 3: Examples of state and federal actor Examples of technology providers Examples of communities • New Energy and Industrial Technology Development Organization NEDO (Japan) • Ministry of Trade, Industry and Energy MOTIE (Korea) • Ministry of Economic Affairs MOEA (Taiwan) • National Energy Administration NEA (China) • National Development Reform Commission (NDRC) (China) • Ministry of the Environment and Water Resources MEWR (Singapore) • Ministry for National Development (MND) (Singapore) • Ministry of Trade and Industry (Singapore) • Renewable energy Agency ARENA (Australia) • Department of Resources, Energy and Tourism (DRET) (Australia) • Council of Australian Governments Energy Council COAGEC (Australia) • Australian Energy Market Operator AEMO (Australia) • Samsung • LG • Tesla • City of Sendai • White Gum Valley Examples of local utilities Examples of research actors Examples of NGOs • Synergy (Australia) • Chinese academy of sciences (China) • Curtin University (Australia) • NTT Facilities Research Institute (Japan) • Tohoku Fukushi University • Clean Energy Council (Australia) Sources: [1–7] [1] Romankiewicz J, Marnay C, Zhou N, Qu M. Lessons from international experience for China's microgrid demonstration program. Energy Policy. 2014; 67:198–208. [2] Chan D, Cameron M, Yoon Y. Implementationof micro energy grid: A case study of a sustainable community in China. Energy and Buildings. 2017; 139:719–31. [3] Feng W, Jin M, Liu X, Bao Y, Marnay C, Yao C, et al. A review of microgrid development in the United States–A decade of progress on policies, demonstrations, controls, and software tools. Applied energy. 2018; 228:1656–68. [4] Akizu O, Bueno G, Barcena I, Kurt E, Topaloğlu N, Lopez-Guede J. Contributions of Bottom-Up Energy Transitions in Germany: A Case Study Analysis. Energies. 2018; 11:849. [5] Nohrstedt L. Skånsk by blir först med mikronät. Ny Teknik; 2017. [6] MGK E. Homepage. Microgrid knowledge 2019. [7] Green J, Newman P. Planning and Governance for Decentralized Energy Assets in Medium-Density Housing: The WGV Gen Y Case Study. Urban Policy and Research. 2018; 36:201–14. Appendix E; Funding text 4: Microgrid related projects funded by the European Commission

Available from: 2020-01-30 Created: 2020-01-30 Last updated: 2023-05-25Bibliographically approved
Karltorp, K., Bergek, A., Fahnestock, J., Hellsmark, H. & Ulmanen, J. (2019). Statens roll för klimatomställning i processindustrin: Utmaningar och möjligheter för socioteknisk omställning i svensk industri för framställning av järn- och stål, cement, raffinaderiprodukter och kemikalier. ri.se
Open this publication in new window or tab >>Statens roll för klimatomställning i processindustrin: Utmaningar och möjligheter för socioteknisk omställning i svensk industri för framställning av järn- och stål, cement, raffinaderiprodukter och kemikalier
Show others...
2019 (Swedish)Report (Other academic)
Alternative title[sv]
Statens roll för klimatomställning i processindustrin : Utmaningar och möjligheter för socioteknisk omställning i svensk industri för framställning av järn- och stål, cement, raffinaderiprodukter och kemikalier
Abstract [sv]

Under de senaste åren har takten och ambitionsnivån i klimatarbetet höjts vilket bland annat resulterat i det internationella Parisavtalet och ett nationellt klimatmål - om att Sverige senast år 2045 inte ska ha några nettoutsläpp av växthusgaser till atmosfären, för att därefter uppnå negativa utsläpp. För att nå dessa ambitiösa mål krävs omfattande samhällsförändringar inom alla sektorer inte minst industrin som i Sverige står för drygt 30% av växthusgasutsläpp. Framställning av järn- och stål,

cement, raffinaderiprodukter och kemikalier orsakar den största delen av dessa utsläpp. Under de senaste decennierna har olika åtgärder genomförts för att minska dessa utsläpp, men med undantag för pappers- och massaindustrin är växthusgas-utsläpp i stort sett på samma nivå som 1990. För att nå målen krävs en helt annan utveckling än vad som skett de senaste decennierna - mycket kraftiga utsläppsminskningar måste ske på mycket kort tid.

Regeringen har givit Energimyndigheten i Uppdrag att genomföra innovationsfrämjande insatser för att minska process-industrins utsläpp av växthusgaser (N2016/06369/IFK). Inom ramen för detta regeringsuppdrag har forskningsinstitutet RISE, Chalmers och Jönköpings Internationella Handelshögskola fått ett uppdrag som syftar till att ta fram ett kunskaps-underlag om hur staten och andra aktörer kan stimulera en omställning mot kraftigt minskade växthusgasutsläpp inom svensk processindustri. Resultatet av detta uppdrag presenteras i denna rapport och de mest centrala slutsatserna presenteras i denna sammanfattning.

Rapporten är avgränsad till analyser av de processindustrier som står för störst andel fossila växthusgasutsläpp i Sverige:

järn- och stålindustrin (i denna rapport benämnd stålindustrin), cementindustrin, raffinaderiindustrin och kemiindustrin. För varje industri analyseras några exempel på tekniska alternativ (i denna rapport kallade omställningsalternativ) som kan leda till en omställning i form av sänkta processutsläpp av fossila växthusgaser. Effektivare användning av material samt högre grad av cirkulära flöden, så som ökad återvinning och ökad återanvändning, kan bidra till att sänka utsläppen. För att ge underlag för en bredare reflektion kring denna typ av alternativ inkluderas även några exempel på detta i analyserna.

Analyserna i denna rapport utgår från ett sociotekniskt systemperspektiv på omställningar av industrier. Det innebär att teknisk förändring ses i ett större sammanhang, där tekniska system, aktörsstrukturer och institutioner utvecklas tillsammans i en iterativ process som kännetecknas av lärande och experimenterande men också betydande trögheter. Statens roll i sådana omställningsprocesser kan dels vara att stimulera teknisk utveckling i linje med samhällets långsiktiga mål (t.ex. hållbar utveckling), dels att låsa upp eller fasa ut etablerade strukturer för att ge plats för nya, mer önskvärda tekniker.

Place, publisher, year, edition, pages
ri.se: , 2019. p. 144
Series
RISE Rapport ; 2019:15
National Category
Public Administration Studies
Identifiers
urn:nbn:se:ri:diva-40376 (URN)978-91-88907-39-4 (ISBN)
Available from: 2019-10-08 Created: 2019-10-08 Last updated: 2019-10-09Bibliographically approved
Warneryd, M., Wilson, K., Karltorp, K., Boork, M., Kovacs, P. & Norrblom, H. L. (2018). Affärsmodeller för solcellsinstallation i flerbostadshus och kommersiella fastigheter – en handbok.
Open this publication in new window or tab >>Affärsmodeller för solcellsinstallation i flerbostadshus och kommersiella fastigheter – en handbok
Show others...
2018 (Swedish)Report (Other academic)
Abstract [sv]

Priset på solceller har stadigt minskat under senare år, samtidigt som effektiviteten har ökat. Alltfler, både privatpersoner och företag, väljer att investera i solcellsanläggningar. Drivkrafterna för att genomföra en installation är många och varierande, men vägen mot beslut är inte alltid enkel. Denna handbok riktar sig främst mot fastighetsägare till bostadsfastigheter och lokalfastigheter samt bostadsrättsföreningar. Syftet är att stödja dessa aktörsgrupper inför beslut om en eventuell solcellsinstallation. Innehållet i handboken bygger på resultat från workshops och intervjuer med representanter från de olika grupperna.

Handboken beskriver möjliga affärsmodeller för solel uppdelat på de olika aktörsgrupperna, men även såväl ekonomiska som icke-ekonomiska nyttor med att installera en solelanläggning. Tre huvudtyper av affärsmodell presenteras:

- Fastighetsägaren investerar och äger solcellsanläggningen.

- Anläggningen leasas från ett leasingbolag, med eller utan avbetalning.

- Fastighetsägaren upplåter takytor till en annan aktör som investerar i solceller.

Affärsmodellsbeskrivningarna inkluderar ägarförhållanden, lönsamhet, hur den producerade solelen kan användas samt för- och nackdelar med modellen. Styrmedel i form av regler, stöd och ersättningar kan dessutom påverka både anläggningens storlek och dess lönsamhet. Aktuella regler beskrivs i handboken. Eftersom solelmarknaden och regelverk är i ständig förändring bör man alltid kontrollera vad som gäller inför en installation. I slutet på

handboken finns därför tips på vidare läsning och relevanta myndigheter.

Publisher
p. 43
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-34722 (URN)
Funder
Region Västra Götaland
Available from: 2018-08-15 Created: 2018-08-15 Last updated: 2023-06-05Bibliographically approved
Karltorp, K., Guo, S. & Sandén, B. A. (2017). Handling financial resource mobilisation in technological innovation systems - The case of chinese wind power. Journal of Cleaner Production, 142, 3872-3882
Open this publication in new window or tab >>Handling financial resource mobilisation in technological innovation systems - The case of chinese wind power
2017 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 142, p. 3872-3882Article in journal (Refereed) Published
Abstract [en]

To mitigate climate change, a rapid and large-scale expansion of sustainable innovations such as renewable energy technologies is crucial. China's track record of wind power development shows both speed and scale that can provide valuable knowledge of how to stimulate and maintain transformation of energy systems. The growth was made possible partly by ample access to financial capital. However, the rapid growth also led to growing pains and made the industry face increasing financial constraints. While these constraints partly relate to structures and trends that are external to the wind power innovation system, they were also a consequence of the particular path taken in Chinese wind power development. The case demonstrates that if a full-fledged industry is to be developed and sustained, a balanced growth is required and all innovation system functions need due attention, sooner or later. Conceptually, the article contributes by further exploring how mobilisation of financial resources affect and is affected by overall system dynamics.

Keywords
China, Financial resources, Innovation system, Resource mobilisation, Wind power, Climate change, Finance, Renewable energy resources, Innovation system functions, Mobilisation, Renewable energy technologies, Technological innovation systems, Wind power development
National Category
Medical Engineering
Identifiers
urn:nbn:se:ri:diva-29191 (URN)10.1016/j.jclepro.2016.10.075 (DOI)2-s2.0-85006511994 (Scopus ID)
Available from: 2017-04-03 Created: 2017-04-03 Last updated: 2019-06-27Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-1993-6453

Search in DiVA

Show all publications