Open this publication in new window or tab >>Show others...
2023 (English)In: Polymer Reviews, ISSN 1558-3724, no 2, p. 437-Article in journal (Refereed) Published
Abstract [en]
The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics. © 2022 The Author(s).
Place, publisher, year, edition, pages
Taylor and Francis Ltd., 2023
Keywords
cellulose, composites, conductive polymers, nanocellulose, PEDOT, Aerogels, Chemical bonds, Chemical stability, Sols, Styrene, Suspensions (fluids), Biodegradable material, Conductive Polymer, Ethylenedioxythiophenes, High mechanical strength, Nano-cellulose, Poly(styrene sulfonate), Property, Renewable materials, Sustainable technology, Conducting polymers
National Category
Chemical Sciences
Identifiers
urn:nbn:se:ri:diva-60200 (URN)10.1080/15583724.2022.2106491 (DOI)2-s2.0-85136111219 (Scopus ID)
Note
Funding details: Dimbleby Cancer Care, DCC, 2016–05193; Funding details: Stiftelsen för Strategisk Forskning, SSF, GMT14-0058; Funding details: Wallenberg Wood Science Center, WWSC; Funding text 1: The authors would like to acknowledge funding from Vinnova for the Digital Cellulose Competence Center (DCC), Diary number 2016–05193, the Swedish Foundation for Strategic Research (GMT14-0058) and the Wallenberg Wood Science Centre.
2022-09-222022-09-222023-06-30Bibliographically approved