Change search
Link to record
Permanent link

Direct link
Publications (5 of 5) Show all publications
Stenlund, P., Enstedt, L., Gilljam, K., Standoft, S., Ahlinder, A., Lundin Johnson, M., . . . Berglin, M. (2023). Development of an All-Marine 3D Printed Bioactive Hydrogel Dressing for Treatment of Hard-to-Heal Wounds. Polymers, 15(12), Article ID 2627.
Open this publication in new window or tab >>Development of an All-Marine 3D Printed Bioactive Hydrogel Dressing for Treatment of Hard-to-Heal Wounds
Show others...
2023 (English)In: Polymers, E-ISSN 2073-4360, Vol. 15, no 12, article id 2627Article in journal (Refereed) Published
Abstract [en]

Current standard wound care involves dressings that provide moisture and protection; however, dressings providing active healing are still scarce and expensive. We aimed to develop an ecologically sustainable 3D printed bioactive hydrogel-based topical wound dressing targeting healing of hard-to-heal wounds, such as chronic or burn wounds, which are low on exudate. To this end, we developed a formulation composed of renewable marine components; purified extract from unfertilized salmon roe (heat-treated X, HTX), alginate from brown seaweed, and nanocellulose from tunicates. HTX is believed to facilitate the wound healing process. The components were successfully formulated into a 3D printable ink that was used to create a hydrogel lattice structure. The 3D printed hydrogel showed a HTX release profile enhancing pro-collagen I alpha 1 production in cell culture with potential of promoting wound closure rates. The dressing has recently been tested on burn wounds in Göttingen minipigs and shows accelerated wound closure and reduced inflammation. This paper describes the dressings development, mechanical properties, bioactivity, and safety. 

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
3D printed scaffolds, alginate, biomaterial, hard-to-heal wounds, nanocellulose, salmon roe, wound dressing, 3D printing, Biomechanics, Cell culture, Hydrogels, %moisture, 'current, 3d printed scaffold, Bioactive hydrogels, Hard-to-heal wound, Hydrogels dressings, Nano-cellulose, Wound closure, Wound dressings
National Category
Biomaterials Science
Identifiers
urn:nbn:se:ri:diva-65731 (URN)10.3390/polym15122627 (DOI)2-s2.0-85163772755 (Scopus ID)
Note

Correspondence Address: P. Stenlund; Department of Methodology, Textile and Medical Technology, RISE Research Institutes of Sweden AB, Gothenburg, Arvid Wallgrens backe 20, SE-413 46, Sweden;  This research was funded by ERA-Net Cofund on the Blue Bioeconomy—Unlocking the Potential of Aquatic Bioresources (BlueBio ID: 151), Swedish Research Council for Environment Agricultural Sciences and Spatial Planning (2019-02350), and Norwegian Research Council (311702).

Available from: 2023-08-08 Created: 2023-08-08 Last updated: 2024-04-02Bibliographically approved
Wojno, S., Ahlinder, A., Altskär, A., Stading, M., Abitbol, T. & Kádár, R. (2023). Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis. Carbohydrate Polymers, 308, Article ID 120622.
Open this publication in new window or tab >>Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis
Show others...
2023 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 308, article id 120622Article in journal (Refereed) Published
Abstract [en]

We examine the influence of surface charge on the percolation, gel-point and phase behavior of cellulose nanocrystal (CNC) suspensions in relation to their nonlinear rheological material response. Desulfation decreases CNC surface charge density which leads to an increase in attractive forces between CNCs. Therefore, by considering sulfated and desulfated CNC suspensions, we are comparing CNC systems that differ in their percolation and gel-point concentrations relative to their phase transition concentrations. The results show that independently of whether the gel-point (linear viscoelasticity, LVE) occurs at the biphasic - liquid crystalline transition (sulfated CNC) or at the isotropic - quasi-biphasic transition (desulfated CNC), the nonlinear behavior appears to mark the existence of a weakly percolated network at lower concentrations. Above this percolation threshold, nonlinear material parameters are sensitive to the phase and gelation behavior as determined in static (phase) and LVE conditions (gel-point). However, the change in material response in nonlinear conditions can occur at higher concentrations than identified through polarized optical microscopy, suggesting that the nonlinear deformations could distort the suspensions microstructure such that for example a liquid crystalline phase (static) suspension could show microstructural dynamics similar to a biphasic system.

Place, publisher, year, edition, pages
Elsevier Ltd, 2023
Keywords
Cellulose nanocrystal suspensions, Fourier-transform rheology, Percolation, Self-assembly phases, Stress decomposition, Cellulose, Cellulose derivatives, Gelation, Nanocrystals, Nonlinear optics, Solvents, Suspensions (fluids), Cellulose nanocrystal suspension, Gel phasis, Gel point, Linear viscoelasticity, Material response, Rheological analysis, Self-assembly phase, Stress decompositions, Self assembly, Behavior, Dispersions, Phase Transition
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-64094 (URN)10.1016/j.carbpol.2023.120622 (DOI)2-s2.0-85147603169 (Scopus ID)
Note

Correspondence Address: Abitbol T, RISE, Sweden;  Funding details: BASF; Funding details: Wallenberg Wood Science Center, WWSC; Funding text 1: SW and RK are grateful for the financial support of the Wallenberg Wood Science Centre (WWSC) and of the Chalmers Area of Advance Materials Science. The Chair of Sustainable Packaging within the Institute of Materials at EPFL, co-funded by BASF, Logitech, Nestlé and SIG, is acknowledged by TA. A.Ah, A.A. and M.S. are grateful for the financial support from KP Nanocellulose platform at RISE AB.; Funding text 2: SW and RK are grateful for the financial support of the Wallenberg Wood Science Centre (WWSC) and of the Chalmers Area of Advance Materials Science. The Chair of Sustainable Packaging within the Institute of Materials at EPFL, co-funded by BASF, Logitech, Nestlé and SIG, is acknowledged by TA. A.Ah, A.A. and M.S. are grateful for the financial support from KP Nanocellulose platform at RISE AB.

Available from: 2023-02-28 Created: 2023-02-28 Last updated: 2023-10-06Bibliographically approved
Niimi, J., Ahlinder, A., Nilsson Pingel, T., Niimi, C., Höglund, E., Öhgren, C., . . . Nielsen, T. (2023). Saltiness enhancement: Impact of acid added to bread with heterogeneously distributed sodium chloride. Lebensmittel-Wissenschaft + Technologie, 176, Article ID 114557.
Open this publication in new window or tab >>Saltiness enhancement: Impact of acid added to bread with heterogeneously distributed sodium chloride
Show others...
2023 (English)In: Lebensmittel-Wissenschaft + Technologie, ISSN 0023-6438, E-ISSN 1096-1127, Vol. 176, article id 114557Article in journal (Refereed) Published
Abstract [en]

The current global sodium consumption exceeds recommended daily intakes and there is a great need to reduce the sodium content in foods for a healthier society. The current study investigated the effect of combining sensory interaction principles and heterogeneous distribution of NaCl in bread on sensory properties, structure, and NaCl distribution. Breads were prepared in three different arrangements of NaCl distribution: homogenous, layered, and layered with lactic acid. Within each arrangement, four NaCl levels were tested. The breads were evaluated by a sensory panel for perceived saltiness, sourness, and qualitative texture, measured for stiffness, and the NaCl distribution was determined by X-ray fluorescence microscopy (XFM). Perceived saltiness was significantly enhanced in breads beyond heterogeneous NaCl distribution when lactic acid was added. Stiffness measurements were affected by layering of bread, the layers without NaCl were stiffer with an increase in overall salt concentration. The heterogeneous distribution of NaCl in layered breads could be visualised by XFM and textural consequences of layering bread are discussed. The current study demonstrates the potential of combining principles of pulsation of taste and sensory interactions together to enhance salt perception, and hence suggesting the approach as a possible further strategy for NaCl reduction in bread.

Place, publisher, year, edition, pages
Academic Press, 2023
Keywords
Heterogeneous salt distribution, Perception, Pulsation, Salt, Sensory interactions, Fluorescence microscopy, Food products, Lactic acid, Sensory perception, Stiffness, Textures, 'current, Heterogeneous distributions, Recommended daily intakes, Sensory panels, Sensory properties, Stiffness measurements, X-ray fluorescence microscopy, Sodium chloride
National Category
Food Science
Identifiers
urn:nbn:se:ri:diva-63980 (URN)10.1016/j.lwt.2023.114557 (DOI)2-s2.0-85147538587 (Scopus ID)
Note

Correspondence Address: Niimi J, RISE Research Institutes of Sweden, Sweden. Funding details: Västra Götalandsregionen, RUN 2020–00378; Funding details: VINNOVA, 2020–01824; Funding text 1: The measurements indicated only a little NaCl migration after baking, freezing, storage and thawing, since sharp changes in the chlorine signals were not observed, but rather a gradual transition between the layers (Fig. S6). Also, the signal did not drop to zero in the centre of the layers with no added NaCl. The amount of NaCl migration appeared to be so small that it is not expected to have a significant impact on the perceived saltiness of the breads. Additional measurements were performed using ICP-OES and IC to investigate if the migration of sodium is larger than the observed chlorine migration in the XFM measurements. The migration of sodium was similar or less to that of chlorine, which supported the conclusions drawn from the XFM results (for methodology and a summary of the ICP-OES/IC results see S2.0 and Table S2 in the supplementary material). Given that the ICP-OES/IC measurements showed that chlorine migrated in a similarly strong manner to sodium, it is reasonable to assume that the sodium distribution was adequately represented by chlorine. These measurements with XFM demonstrated its applicability in measuring chlorine ions in bread. Previous applications of XFM were on plant materials such as leaves, seedlings, barley grains, and rice kernels to measure distribution of ions such as zinc, calcium, potassium, and manganese among others. The results demonstrate that XFM can be a useful tool in confirming heterogenous distribution of chlorine ions of NaCl in processed food stuffs, such as breads.This study was performed under the project ReduSalt – Salt Reduction in Foods, a project funded by Sweden's Innovation Agency (Vinnova), grant number 2020–01824. The financial support by Region Västra Götaland, Sweden, grant number RUN 2020–00378, is also gratefully acknowledged.  Funding text 2: This study was performed under the project ReduSalt – Salt Reduction in Foods, a project funded by Sweden's Innovation Agency (Vinnova) , grant number 2020–01824 . The financial support by Region Västra Götaland, Sweden , grant number RUN 2020–00378 

Available from: 2023-02-22 Created: 2023-02-22 Last updated: 2024-03-25Bibliographically approved
Ahlinder, A., Höglund, E., Öhgren, C., Miljkovic, A. & Stading, M. (2023). Towards attractive texture modified foods with increased fiber content for dysphagia via 3D printing and 3D scanning. Frontiers in Food Science and Technology, 2
Open this publication in new window or tab >>Towards attractive texture modified foods with increased fiber content for dysphagia via 3D printing and 3D scanning
Show others...
2023 (English)In: Frontiers in Food Science and Technology, E-ISSN 2674-1121, Vol. 2Article in journal (Refereed) Epub ahead of print
Abstract [en]

As life expectancy increases so do age related problems such as swallowing disorders, dysphagia, which affects 10%–30% of people over 65 years old. For dysphagia patients the texture and rheological properties of the food, and the bolus, is critical to avoid choking and pneumonia. Texture modified foods, timbals, are often served to these patients due to their ease of swallowing. The main concern with these foods is that they do not look visually alike the food they replace, which can decrease the patient’s appetite and lead to reduced food intake and frailty. This study aims to improve both the visual appearance of texturized food as well as the energy density and fiber content of the timbal formulation. 3D scanning and additive manufacturing (3D Printing) were used to produce meals more reminiscent of original food items, increasing their visual appeal. Rheology was used to ensure the original flow profile was maintained as the timbal was reformulated by reducing starch contents and partially replacing with dietary fibers. The amount of starch was reduced from 8.7 wt% in the original formulation to 3.5 wt% and partially replaced with 3 wt% citrus fiber, while maintaining properties suitable for both swallowing and 3D printing. The resulting formulation has improved nutritional properties, while remaining suitable for constructing visually appealing meals, as demonstrated by 3Dprinting a chicken drumstick from a model generated with 3D scanning.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2023
National Category
Food Science
Identifiers
urn:nbn:se:ri:diva-66381 (URN)10.3389/frfst.2022.1058641 (DOI)
Note

This study was supported by the Sweden’s Innovation Agency Vinnova.

Available from: 2023-09-05 Created: 2023-09-05 Last updated: 2024-03-25Bibliographically approved
Ojansivu, M., Rashad, A., Ahlinder, A. E., Massera, J., Mishra, A., Syverud, K., . . . Mustafa, K. (2019). Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication, 11(3)
Open this publication in new window or tab >>Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
Show others...
2019 (English)In: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 11, no 3Article in journal (Refereed) Published
Abstract [en]

A challenge in the extrusion-based bioprinting is to find a bioink with optimal biological and physicochemical properties. The aim of this study was to evaluate the influence of wood-based cellulose nanofibrils (CNF) and bioactive glass on the rheological properties of gelatin-alginate bioinks and the initial responses of bone cells embedded in these inks. CNF modulated the flow behavior of the hydrogels, thus improving their printability. Chemical characterization by SEM-EDX and ion release analysis confirmed the reactivity of the BaG in the hydrogels. The cytocompatibility of the hydrogels was shown to be good, as evidenced by the viability of human osteoblast-like cells (Saos-2) in cast hydrogels. For bioprinting, 4-layer structures were printed from cell-containing gels and crosslinked with CaCl2. Viability, proliferation and alkaline phosphatase activity (ALP) were monitored over 14 days. In the BaG-free gels, Saos-2 cells remained viable, but in the presence of BaG the viability and proliferation decreased in correlation with the increased viscosity. Still, there was a constant increase in the ALP activity in all the hydrogels. Further bioprinting experiments were conducted using human bone marrow-derived mesenchymal stem cells (hBMSCs), a clinically relevant cell type. Interestingly, hBMSCs tolerated the printing process better than Saos-2 cells and the ALP indicated BaG-stimulated early osteogenic commitment. The addition of CNF and BaG to gelatin-alginate bioinks hold great potential for bone tissue engineering applications.

Keywords
Saos-2, bioink, bioprinting, bone tissue engineering, cellulose nanofibril, mesenchymal stem cell, viscosity
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-37819 (URN)10.1088/1758-5090/ab0692 (DOI)30754034 (PubMedID)2-s2.0-85063390553 (Scopus ID)
Available from: 2019-03-01 Created: 2019-03-01 Last updated: 2023-05-25Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6877-7858

Search in DiVA

Show all publications