Change search
Link to record
Permanent link

Direct link
Malou Petersson, AnnaORCID iD iconorcid.org/0000-0003-3048-4491
Alternative names
Publications (5 of 5) Show all publications
Granlund, A., Malou Petersson, A., Sundström, J., Narvesjö, J. & Lindh, E. M. (2022). Evaluation of Local Conditions and Their Impact on Bifacial PV Performance at High Latitude. In: : . Paper presented at 8th World Conference on Photovoltaic Energy Conversion (pp. 1446-1452).
Open this publication in new window or tab >>Evaluation of Local Conditions and Their Impact on Bifacial PV Performance at High Latitude
Show others...
2022 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Different conditions such as module orientation, ground albedo, shading and latitude are known to affect the performance of bifacial photovoltaic modules. We evaluate bifacial performance for one year at a site located at 65°N through comparison of measured and simulated front and back side plane-of-array irradiation. Each investigated module has a different azimuth, tilt, and exposure to shading from the surroundings. Local shading is found to severely impact the energy yield of the site in general, and individual modules to a varying degree depending on their location and orientation. Proper shading analysis appears to be required in the planning phase of a bifacial photovoltaic installation to accurately calculate the expected energy yield. The bifacial gain of the modules with azimuths in the east–west sector is found to span a range from 16 % to approximately the bifaciality factor, depending on the orientation. To fully utilize the potential of bifacial photovoltaics, this variability also needs to be carefully considered when planning and building bifacial photovoltaic installations.

Keywords
Bifacial, Shading, Simulation
National Category
Environmental Engineering
Identifiers
urn:nbn:se:ri:diva-61620 (URN)10.4229/WCPEC-82022-4CV.1.2 (DOI)3-936338-86-8 (ISBN)
Conference
8th World Conference on Photovoltaic Energy Conversion
Available from: 2022-12-21 Created: 2022-12-21 Last updated: 2024-08-12Bibliographically approved
Granlund, A., Lindh, E. M., Vikberg, T. & Malou Petersson, A. (2022). Evaluation of Snow Removal Methods for Rooftop Photovoltaics. In: : . Paper presented at 8th World Conference on Photovoltaic Energy Conversion (pp. 1122-1128).
Open this publication in new window or tab >>Evaluation of Snow Removal Methods for Rooftop Photovoltaics
2022 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Avoiding snow on photovoltaic (PV) installations is motivated for two reasons: to decrease power losses from shading, or to decrease mechanical loads to avoid damage to the PV-installation and the underlying construction. We experimentally investigated the effectiveness and suitability of four different snow removal methods at our facility in the north of Sweden (Piteå, 65°N), throughout three winters. The layout of a PV installation and the underlying roof, together with meteorological conditions and snow characteristics, impact which methods are best suited for snow removal. A simple roof rake with a rectangular toolhead works well when the snowpack is compact and not too thick, whereas a roof rake with a slide works better when the snow is dry and packed. Neither the investigated passive hydrophobic surface coatings, nor the active forward bias electrical heating methods induced shedding of the accumulated snowpack in our experiments without additional intervention. At our test facility in Piteå, the roof rake with a slide was the most effective and user-friendly snow removal. Despite maximum snow loads of approximately 1 kPa, far below the modules’ rating, cell damage was observed for both snow removal groups (except for the slide roof rake group) and the control group.

Keywords
Evaluation, Rooftop, Electroluminescence, Durability, Snow
National Category
Civil Engineering
Identifiers
urn:nbn:se:ri:diva-61619 (URN)10.4229/WCPEC-82022-4DO.4.6 (DOI)3-936338-86-8 (ISBN)
Conference
8th World Conference on Photovoltaic Energy Conversion
Available from: 2022-12-21 Created: 2022-12-21 Last updated: 2023-06-08Bibliographically approved
Lindh, E. M. & Malou Petersson, A. (2021). 7.9 SWEDEN: RISE bifacial test site in Piteå. In: Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications: IEA PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems (pp. 143). INTERNATIONAL ENERGY AGENCY
Open this publication in new window or tab >>7.9 SWEDEN: RISE bifacial test site in Piteå
2021 (English)In: Bifacial Photovoltaic Modules and Systems: Experience and Results from International Research and Pilot Applications: IEA PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems, INTERNATIONAL ENERGY AGENCY , 2021, p. 143-Chapter in book (Other academic)
Abstract [en]

The name of the bifacial test site, Solvåg (Sunwave), reflects the design of the solar array, which winds across a grass field surrounded by pine trees; the azimuth and inclination of the solar modules vary along the array (see Figure 95). The solar park is municipality owned through the local power company, PiteEnergi, and located at the Piteå School of Music (65.3° N, 21.5° E) in the subarctic, coastal part of Sweden. The site is the result of a regional collaboration between PiteEnergi, Norut, Luleå University of Technology, and Piteå Science Park, and it was inaugurated by the Swedish Minister for Energy in July 2018. The Solvåg solar park is integrated into the city landscape and includes a wooden boardwalk along the modules to encourage the public to visit the site. The site’s blend of solar research (through RISE) and architectural design is reflected in the custom-made wooden mounting racks.

Place, publisher, year, edition, pages
INTERNATIONAL ENERGY AGENCY, 2021
Series
Report IEA-PVPS T13-14:2021
National Category
Engineering and Technology
Identifiers
urn:nbn:se:ri:diva-62518 (URN)978-3-907281-03-1 (ISBN)
Available from: 2023-01-12 Created: 2023-01-12 Last updated: 2023-05-09Bibliographically approved
Mattias, L., Svedjeholm, M., Granlund, A., Petersson, J. & Malou Petersson, A. (2020). Handbok för nordlig solel.
Open this publication in new window or tab >>Handbok för nordlig solel
Show others...
2020 (Swedish)Report (Other academic)
Abstract [sv]

Solen är en för människan evig energikälla och solel har en given plats i ett framtida hållbart och förnybart energisystem – globalt och i Sverige. Kostnaden för en solelanläggning har sjunkit drastiskt de senaste åren och tillgängligheten har ökat. Det gör solel relevant utanför de regioner som har störst solinstrålning; även i norra Skandinavien är det en långsiktigt hållbar investering ur både ett energi- och ekonomiskt perspektiv.

Nordlig solel har goda men annorlunda förutsättningar jämfört med de i södra Sverige och Centraleuropa. Solens position på himlen och den instrålade energin per år är lägre, det är en stor andel diffust ljus och man kan förvänta sig mer reflektioner från en snötäckt mark på vintern. På sommaren är soltimmarna fler och solens bana längre. Medeltemperaturen är betydligt lägre på årsbasis men skillnaden mot sydligare breddgrader är mindre under sommaren då instrålningen är stor. En annan avgörande faktor är snö som under stora delar av året i norr täcker marken och potentiellt solelanläggningar. Om snötäckningen kan begränsas till de mörkaste månaderna blir årseffekterna på energiproduktionen små, men snölaster ställer höga krav på solelanläggningars kvalitet, både ur installations- och komponentperspektiv.

Genom att beakta följande fem rekommendationer kan man minska risken för problem:

1. Undersök snöförhållandena på platsen innan installation. Anläggningsägaren vet ofta bäst var snön brukar ansamlas och när den smälter bort eller glider av.

2. Säkerställ att installationen är genomtänkt ur ett snöperspektiv. En noggrann kontroll av att installationen följer leverantörernas anvisningar är extra viktigt när förhållandena är krävande.

3. Välj robusta moduler och fästanordningar – en solelanläggning ska hålla i många år och bör utformas för att klara lokala snöförhållanden.

4. Utforma om möjligt anläggningen så att snöröjning inte krävs. Röj (varsamt) undan snö från anläggningen om det trots det blir nödvändigt: för att undvika takras, skydda solelanläggningen mot tryck- och glidskador från ett tjockt snötäcke och för att möjliggöra elproduktion från tidig vår.

5. Montera modulerna med rätt orientering. Söderläge och så hög lutning som möjligt upp till om kring 50° (i Piteå) är generellt bäst. Ofta är man begränsad av takets utformning men även avvikelser från söder mot öst eller väst och mindre lutningar kan ge ett acceptabelt energiutbyte.

Huvudregeln bör vara att: Montera solceller där solinstrålningen är stor men snö inte ansamlas!

Publisher
p. 51
Series
RISE Rapport ; 2020:61
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-45145 (URN)978-91-89167-46-9 (ISBN)
Available from: 2020-07-01 Created: 2020-07-01 Last updated: 2023-05-22Bibliographically approved
Granlund, A., Narvesjö, J. & Malou Petersson, A. (2019). The Influence of Module Tilt on Snow Shadowing of Frameless Bifacial Modules. In: : . Paper presented at 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, September 9-13, 2019 (pp. 1650-1654). , Article ID 5CV.4.36.
Open this publication in new window or tab >>The Influence of Module Tilt on Snow Shadowing of Frameless Bifacial Modules
2019 (English)Conference paper, Published paper (Other academic)
Abstract [en]

In this study, frameless bifacial modules’ performance in a boreal climate is examined, with a focus on snow coverage and snow clearance for different module tilt angles. A group of ten bifacial modules at different tilt angles located in northern Sweden at latitude 65°N were studied during the first months of 2019. It was shown that modules mounted at 0 and 15° tilt was covered the most by snow and 80 and 90° the least. All other modules, mounted at 25-70° tilt, showed mostly similar results in snow coverage and removal. All modules were subjected to snow coverage from January to March. In January no considerable energy output was observed for any module. In February and March modules with tilt angles of 0 and 15° had a lower energy output than the other modules, for which no considerable differences were observed. In April, when no snow coverage occurred, the module mounted at 45° had the largest energy output and in May, 25-35° performed the best. For the entire period of January-May the modules at 35-45° output the most energy.

Keywords
Bifacial, Shading, System Performance, Snow, Snow Removal, Solar, PV
National Category
Energy Systems
Identifiers
urn:nbn:se:ri:diva-42554 (URN)10.4229/EUPVSEC20192019-5CV.4.36 (DOI)3-936338-60-4 (ISBN)
Conference
36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, September 9-13, 2019
Projects
SunCold
Available from: 2020-01-10 Created: 2020-01-10 Last updated: 2024-08-12Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-3048-4491

Search in DiVA

Show all publications