Change search
Link to record
Permanent link

Direct link
Publications (3 of 3) Show all publications
Olsson, H., Andersson, J., Eriksson, A. & Nordberg, Å. (2019). Askåterföring och biogasuppgradering med träbränsleaska.
Open this publication in new window or tab >>Askåterföring och biogasuppgradering med träbränsleaska
2019 (Swedish)Report (Other academic)
Abstract [en]

Wood fuel ash is a resource that should be used for nutrient recycling to forest land andwhich also has the potential to be used for small-scale upgrading of biogas into CNG foruse as vehicle fuel. In the biogas upgrading process, carbon dioxide is fixed through acarbonation process. The carbonation process is also an important part of theconventional ash recycling process, since ash to be returned to forest is usually stabilizedby storing in a pile for a significant period of time to allow the carbon dioxide of the airto act on the ash. This project has explored the possibilities of developing a technicalsystem and business models that can lead to ash filter technology being used to processbiogas into vehicle fuel while at the same time contributing to more wood fuel ash beingreturn to forest land. Work has shown that the preconditions are good for the ashproducers existing infrastructure to be well suited for use in a future system where thebiogas plant replaces the role of the ash terminal for stabilizing the ash. Desirableproperties for ash used for biogas upgrading is that it has a high content of CaO and anability to hold water without creating backpressure in the ash bed, and that the biogasstabilized ash meets the limit values for heavy metals and nutrients for return to forest.Within the project tests were carried out with 10 tonnes of moistened ash involving shortterm storage of fresh ash, ash stabilization in biogas upgrading filters and subsequentreturn to forest land. The biogas stabilized ash had a very low conductivity in relation tothe limit value, showed a lowering of the pH value from close to 13 to below 10 and metthe limit values for heavy metals and plant nutrients for spreading on forest land. Thespreading trail with biogas stabilized ash to forest land showed an acceptable distributionpattern and did not cause any damage to the trees. A slightly higher moisture contentprobably would have further improved the distribution pattern. The tests were successfuland showed that there is good potential for biogas stabilized ashes to be spread with ashrecycling technology currently in use.

In a system where biogas upgrading with ash filter technology is integrated into the ashrecycling chain, the biogas plant will act as a micro-terminal, where ash is handled closerto the ash producer and the distribution site compared to a conventional terminal. Inorder for this to be effective, one partner must be able to coordinate transportation ofash and ensure the ash quality, which in many cases can be an ash contractor. It is alsoof the utmost importance that forest operators and landowners are involved to secureend-users for the stabilized wood fuel ash. The economic calculations show that the costfor ash producers and forest owners would be in the same order of magnitude as for thecurrent ash recycling system. However, there is a potential that ash filter technology cancreate a product of a more uniform and higher quality while at the same time upgradingthe biogas to vehicle gas quality. The system will also contribute to local production ofvehicle fuel and an increased supply of biofuel in rural areas. Revenues from theupgraded biogas are expected to cover a large part of the costs incurred at the biogasplant linked to ash management. However, the cost of handling ash at a biogas plant isdependent on local conditions such as whether the ash is supplied dry or moistened andwhat carbon dioxide uptake capacity it has.

In order to be able to handle ashes from smaller biomass energy plants and other ashproducers that currently deliver dry ash to end-users, it would be desirable to continuework on cost-effective methods for dust-free reception at biogas plants. Furthermore,there is a need for continued work linked to the storage of fresh ash. From a logisticalperspective there is a need to store the ash for shorter periods to get more efficienttransport and to be able to store ash from the winter season for use during the summer.For a long-term successful implementation of the developed system, it is important tocontinue to address the challenge linked to the forest owners’ interest in spreading ashin the future. For a smaller biogas plant that handles 500 tonnes / year of dry ash, acollaboration with up to 200-300 forest owners may be needed to find the distributionarea for the ash over time. The challenge of finding end users for the stabilized ash isshared by other players in the ash value chain and the project group sees opportunitiesthat local use of ash for production of vehicle gas to the community could provide apositive local connection that will aid in the work for increased ash recycling.

p. 35
RISE Rapport ; 2019:111
wood ash, ash-filter, biogas, biomethane, upgrading, nutrient recycling, askfilter, aska, träbränsleaska, askåterföring, biogasuppgradering, fordonsgas
National Category
Natural Sciences
urn:nbn:se:ri:diva-40754 (URN)978-91-89049-64-2 (ISBN)
Available from: 2019-11-14 Created: 2019-11-14 Last updated: 2019-11-14Bibliographically approved
Tamm, D. & Andersson, J. (2019). Nytt innovativt koncept för småskalig produktion och distribution av flytande biogas.
Open this publication in new window or tab >>Nytt innovativt koncept för småskalig produktion och distribution av flytande biogas
2019 (Swedish)Report (Other academic)
Abstract [en]

The biogas market is facing changes, with gas driven vehicles gradually shifting to electrical drivelines, while new markets are emerging in the areas of industry, heavy road transports and shipping. Those new markets may require huge amounts of biomethane in both compressed and liquid form in the future. Liquid biomethane, even called LBM, bio-LNG or LBG (Liquefied BioGas), can directly replace today's LNG (Liquefied Natural Gas) applications.

Today's facilities for the production of LBG use large-scale conventional technology for the liquefaction, with a capacity of over 10 tpd and high capital costs. A significant part of the high costs is due to the requirement of an extra polishing step after biogas upgrading to remove residual carbon dioxide prior to liquefaction. A new technique using an absorption bed of wood ashes seems to be promising for the polishing of smaller volumes and thus enabling small-scale LBG production (Isaksson, et al., 2018). The technology is called ash filter and is developed at RISE in collaboration with SLU. In a previous study (Isaksson, et al., 2018), small systems with 1−2 GWh/a where ash filters are used for upgrading and polishing, as well as large systems of 30 GWh/a where ash filters are used for polishing only have been evaluated.

The present study focuses on producing LBG from a partial flow of upgraded biogas on larger Swedish biogas plants, where the starting point is that the plant's full capacity cannot be utilized for the production of compressed gas alone. It is thus assumed that there is unused capacity for the production of upgraded biogas that can be further processed to LBG. Processing is done using an ash filter and subsequent drying of the gas, and then liquefying the gas in StirLNG-4 machines. Systems with a liquefaction capacity of 5, 15 and 25 GWh/a, respectively, have been reviewed. The production cost for polishing and liquefaction is just over 4 SEK/kg for the 5 GWh/a system, and about 3 SEK/kg for the larger systems.

The analyzed system also included the LBG distribution. Based on the previous study (Isaksson, et al., 2018), a distribution system has been chosen based on insulated ISO containers permanently mounted on semi-trailers. The calculations show that this system has lower total costs than today's systems with stationary LNG storage and road tankers. In the studied system, ISO containers of different sizes are used for both local storage and transport to customers. Transport distances between 50 and 250 km have been assessed. At short distances, a large part of the distribution costs is due to the customer’s local LBG storage. At larger distances, the actual transport costs become dominant, and it gets increasingly interesting to use large containers.

In total, the cost of production (polishing and liquefaction) and distribution is between 3.5 and 5.5 SEK/kg, depending on the production capacity, distance and container size, which can be compared to the current price of vehicle gas of about 16 SEK/kg (CircleK, 2019). The total cost of raw gas production, upgrading and refueling is about 12.5 SEK/kg (Vestman, Liljemark, & Svensson, 2014). The marginal cost of using unused capacity should therefore be lower than that. Depending on the actual marginal costs, this means that small-scale LBG production from a partial flow of upgraded biogas may be profitable.

Abstract [sv]

Biogasmarknaden står inför förändringar, där traditionella marknadssegment med fordonsgas tappas till elektriskt drivna fordon, medan nya marknader utvecklas med industri, tung trafik och sjöfart som framöver kan komma att efterfråga stora mängder biometan i både komprimerad och flytande form. Flytande biometan kallas i Sverige ofta för LBG (Liquefied BioGas) i anknytning till LNG (Liquefied Natural Gas) och kan direkt ersätta dagens tillämpningar av LNG. Även begreppet bio-LNG används.

Dagens anläggningar för produktion av LBG använder storskalig konventionell teknik för förvätskningen, med en kapacitet på över 10 tpd och höga kapitalkostnader. En del av den höga kostnaden utgörs av att det krävs ett extra poleringssteg efter uppgraderingen av biogasen för att ta bort resterande koldioxid, vilket krävs för att kunna förvätska flödet. En ny teknik som använder sig av en absorptionsbädd av träaska ser ut att vara lovande för polering av mindre flöden och på så vis bädda för småskalig LBG-produktion (Isaksson, et al., 2018). Tekniken benämns askfilter och utvecklas på RISE i samarbete med SLU. Små system med 1–2 GWh/a där askfilter används för uppgradering och polering, samt stora system på 30 GWh/a där askfilter används bara för polering har undersökts i en tidigare studie (Isaksson, et al., 2018).

Den föreliggande studien fokuserar på möjligheten att producera LBG av ett delflöde på större svenska biogasanläggningar, där utgångspunkten är att anläggningens fulla kapacitet inte kan utnyttjas vid produktion av enbart komprimerad gas. Det förutsätts alltså att det finns ledig kapacitet för produktion av fordonsgas som kan vidareförädlas till flytande gas. Förädlingen görs med hjälp av ett askfilter och efterföljande torkning av gasen, för att sedan förvätska gasen i StirLNG-4-maskiner. System med en förvätskningskapacitet på 5, 15 respektive 25 GWh/a har granskats. Produktionskostnaden för polering och förvätskning ligger på drygt 4 kr/kg för 5 GWh/a-systemet, och omkring 3 kr/kg för de större systemen.

Även distributionen ingår i systemet som analyserats. Baserat på den tidigare studien (Isaksson, et al., 2018) har ett distributionssystem valts som bygger på isolerade ISO-containrar som permanent monteras på semitrailer. Beräkningarna visar att detta system har lägre totalkostnader än dagens system med stationära lager och tankbilar. I det studerade systemet används ISO-containrar av olika storlek både som lokalt lager och för transporten till kunderna. Transportavstånd mellan 50 och 250 km har analyserats. Vid korta avstånd utgörs en stor del av kostnaderna av den lokala LBG-lagringen hos kunden. Vid större avstånd blir själva transportkostnaden dominerande, och det blir alltmer intressant att använda stora containrar.

Totalt hamnar kostnaden för produktion (polering och förvätskning) och distribution på mellan 3,5 och 5,5 kr/kg, beroende på produktionskapacitet, avstånd och val av containerstorlek, som kan ställas i relation till dagens pris på fordonsgas på ca 16 kr/kg (CircleK, 2019). Den totala kostnaden för rågasproduktion, uppgradering och tankning är ca 12,5 kr/kg (Vestman, Liljemark, & Svensson, 2014); marginalkostnaden vid användning av ledig kapacitet bör därför vara lägre än så. Beroende på bedömningen av marginalkostnaderna innebär det att det bör finnas affärsmöjligheter för småskalig LBG-produktion genom delströmsförvätskning.

p. 20
RISE Rapport ; 2019:53
liquefaction, LNG, LBG, Bio-LNG, LBG, flytande biogas, distribution, småskalig biogas, LNG, bio-LNG, förvätskning
National Category
Energy Systems
urn:nbn:se:ri:diva-39954 (URN)978-91-88907-81-3 (ISBN)
Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2019-09-27Bibliographically approved
Habibivic, A., Andersson, J., Nilsson, M., Malmsten Lundgren, V. & Nilsson, J. (2016). Evaluating interactions with non-existing automated vehicles: three Wizard of Oz approaches. In: 2016 IEEE Intelligent Vehicles Symposium (IV): . Paper presented at 2016 IEEE Intelligent Vehicles Symposium (IV 2016), June 19-22, 2016, Gothenburg, Sweden (pp. 32-37). , Article ID 7535360.
Open this publication in new window or tab >>Evaluating interactions with non-existing automated vehicles: three Wizard of Oz approaches
Show others...
2016 (English)In: 2016 IEEE Intelligent Vehicles Symposium (IV), 2016, p. 32-37, article id 7535360Conference paper, Published paper (Refereed)
Abstract [en]

Highly automated test vehicles are rare today, and (independent) researchers have often limited access to them. Also, developing fully functioning system prototypes is time and effort consuming. In this paper, we present three adaptions of the Wizard of Oz technique as a means of gathering data about interactions with highly automated vehicles in early development phases. Two of them address interactions between drivers and highly automated vehicles, while the third one is adapted to address interactions between pedestrians and highly automated vehicles. The focus is on the experimental methodology adaptations and our lessons learned.

National Category
Natural Sciences
urn:nbn:se:ri:diva-34952 (URN)10.1109/IVS.2016.7535360 (DOI)2-s2.0-84983339917 (Scopus ID)978-1-5090-1821-5 (ISBN)
2016 IEEE Intelligent Vehicles Symposium (IV 2016), June 19-22, 2016, Gothenburg, Sweden
Available from: 2018-08-24 Created: 2018-08-24 Last updated: 2020-02-04Bibliographically approved

Search in DiVA

Show all publications
v. 2.35.9