Change search
Link to record
Permanent link

Direct link
Publications (10 of 42) Show all publications
Corrales-Pérez, B., Díaz-Ufano, C., Salvador, M., Santana-Otero, A., Veintemillas-Verdaguer, S., Beni, V. & Morales, M. d. (2024). Alternative Metallic Fillers for the Preparation of Conductive Nanoinks for Sustainable Electronics. Advanced Functional Materials, 34(45), Article ID 2405326.
Open this publication in new window or tab >>Alternative Metallic Fillers for the Preparation of Conductive Nanoinks for Sustainable Electronics
Show others...
2024 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 34, no 45, article id 2405326Article in journal (Refereed) Published
Abstract [en]

The development of electronics with net zero carbon emissions through more efficient and environmentally friendly materials and processes is still a challenge. Here, alternative chemical synthesis routes of metal conductive nanoparticles, based on biodegradable materials are explored, such as nickel, iron–nickel alloy and iron nanoparticles, to be used, in the long term, as fillers in inks for inject printing. Thus, Ni and FeNi metal nanoparticles of 25–12 nm, forming aggregates of 614–574 nm, respectively, are synthesized in water in the presence of a polyol and a reducing agent and under microwave heating that enables a more uniform and fast heating. Iron nanoparticles of 120 ± 40 nm are synthesized in polyol that limits the aggregation and the oxidation degree. Commercial metal nanoparticles of iron and nickel, are coated with ethylene glycol and used for comparison. The conductivity of nanoparticles when pressed into pellets remains similar for both commercial and synthesized samples. However, when deposited on a strip line and heated, synthesized Ni, FeNi, and Fe nanoparticles show significant conductivity and interesting magnetic properties. It is demonstrated that the nanosize facilitates sintering at reduced temperatures and the capping agents prevent oxidation, resulting in promising conductive fillers for printed electronic applications. 

Place, publisher, year, edition, pages
John Wiley and Sons Inc, 2024
Keywords
Binary alloys; Conductive materials; Ethylene; Ethylene glycol; Fillers; Functional materials; Iron; Iron alloys; Microwave heating; Nanomagnetics; Nickel alloys; Sintering; Synthesis (chemical); Chemical synthesis method; Conductive nanoink; Magnetic metal nanopowder; Magnetic metals; Metal nanopowder; Microwave-heating; Nano-ink; Nanoinks; Polyol coating; Synthesis method; Metal nanoparticles
National Category
Chemical Sciences
Identifiers
urn:nbn:se:ri:diva-73610 (URN)10.1002/adfm.202405326 (DOI)2-s2.0-85194916315 (Scopus ID)
Note

B.C.P. and C.D.U. contributed equally to this work. This research wasfunded by the Spanish Ministry of Science, grant number PID2020-13480RB-I00 and TED2021-130191B-C43, and by the EU-commission,HORIZON-CL4-2021-DIGITAL-EMERGING-01 (HyPELignum), PROJECTNo.101070302 (2022-26). M.S. was supported by a Margarita Salas fel-lowship financed by the European Union-NextGenerationEU and thePlan for Recovery, Transformation and Resilience. Authors also acknowl-edge the Servicio Interdepartamental de Investigación at the Universi-dad Autónoma de Madrid, the TEM Service at the Centro de BiologíaMolecular Severo Ochoa (CBMSO, CSIC-UAM), SEM at MiNa Labora-tory (IMN, funding from CM (project S2018/NMT-4291 TEC2SPACE),MINECO (project CSIC13-4E-1794) and EU (FEDER, FSE)) and XRD, FTIR,the elemental and thermal analysis, and the characterization and growthof thin films service at ICMM/CSIC.

Available from: 2024-06-17 Created: 2024-06-17 Last updated: 2025-02-21Bibliographically approved
Brooke, R., Jain, K., Isacsson, P., Fall, A., Engquist, I., Beni, V., . . . Edberg, J. (2024). Digital Cellulose: Recent Advances in Electroactive Paper. Annual review of materials research (Print), 54(1), 1-25
Open this publication in new window or tab >>Digital Cellulose: Recent Advances in Electroactive Paper
Show others...
2024 (English)In: Annual review of materials research (Print), ISSN 1531-7331, E-ISSN 1545-4118, Vol. 54, no 1, p. 1-25Article in journal (Refereed) Published
Abstract [en]

With the increasing global demand for net-zero carbon emissions, actions to address climate change have gained momentum among policymakers and the public. The urgent need for a sustainable economy is underscored by the mounting waste crisis in landfills and oceans. However, the proliferation of distributed electronic devices poses a significant challenge due to the resulting electronic waste. To combat this issue, the development of sustainable and environmentally friendly materials for these devices is imperative. Cellulose, an abundant and CO2-neutral substance with a long history of diverse applications, holds great potential. By integrating electrically interactive components with cellulosic materials, innovative biobased composites have been created, enabling the fabrication of bulk electroactive paper and the establishment of new, potentially more sustainable manufacturing processes for electronic devices. This review explores recent advances in bulk electroactive paper, including the fundamental interactions between its constituents, manufacturing techniques, and large-scale applications in the field of electronics. Furthermore, it addresses the importance and challenges of scaling up production of electroactive paper, highlighting the need for further research and development.

Place, publisher, year, edition, pages
Annual Reviews, 2024
Keywords
Addresses; Cellulose; Development; Materials; Paper; Production; Wastes; Conducting polymers; Signal receivers; Carbon emissions; Cellulose nanofibrils; Conductive Polymer; Electro-active paper; Electronics devices; Global demand; Nano-cellulose; Policy makers; Sustainable economy; Zero carbons
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:ri:diva-76033 (URN)10.1146/annurev-matsci-080921-084430 (DOI)2-s2.0-85206295715 (Scopus ID)
Funder
Vinnova, 2016-05193Vinnova, 2022-03085Knut and Alice Wallenberg FoundationSwedish Energy Agency, 2021-002347
Note

 The authors acknowledge financial support from Vinnova though the Digital Cellulose Center (DCC) (https://digitalcellulosecenter.se ) (diary number 2016-05193 and 2022-03085), the academic and industrial partners of DCC, the Knut and Alice Wallenberg Foundation via the Wallenberg Wood Science Center, and the Swedish Energy Agency (diary 2021-002347). The authors acknowledge support from Treesearch.se. The authors also thank Nicolas Tissier and Mahiar Hamedi for help with proofreading the manuscript.

Available from: 2024-10-31 Created: 2024-10-31 Last updated: 2024-10-31Bibliographically approved
Melnik, E., Kurzhals, S., Mutinati, G. C., Beni, V. & Hainberger, R. (2024). Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. Sensors, 24(11), Article ID 3678.
Open this publication in new window or tab >>Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels
Show others...
2024 (English)In: Sensors, E-ISSN 1424-8220, Vol. 24, no 11, article id 3678Article in journal (Refereed) Published
Abstract [en]

Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1–10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling ratios (SRs) of 14.43–9.24, as well as mesh sizes ξ of 3.58–6.91 nm were calculated, and it was found that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 × MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638, R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins were measured on electrochemical sensors with and without hydrogel coating. It was found that on sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 92 % for MB, 73 % for MB-BSA, and 23 % for MB-IgG. To investigate the diffusion properties of MB(-conjugates) in hydrogels with 1–10 kDa PEG-DMA, diffusivity was calculated from the current equation. It was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected after drying the MB-BSA-containing hydrogel, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing. 

Place, publisher, year, edition, pages
Multidisciplinary Digital Publishing Institute (MDPI), 2024
Keywords
Aromatic compounds; Electrochemical sensors; Ethylene glycol; Hydrogels; Molar concentration; Molar ratio; Polyethylene glycols; Polyols; Proteins; Conjugated proteins; Diffusion studies; Diffusivity study; Electrochemicals; Methylene Blue; Methylene blue-conjugated protein; Poly(ethylene glycol) dimethacrylate; Swelling ratio; Viscosifiers; Diffusion
National Category
Chemical Sciences
Identifiers
urn:nbn:se:ri:diva-73764 (URN)10.3390/s24113678 (DOI)2-s2.0-85196066167 (Scopus ID)
Note

This work received funding from the Austrian Research Promotion Agency (FFG) under the HydroChip2 (grant no. 883914) and the Predict project (grant no. 870027) as well as from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 761000 (GREENSENSE)

Available from: 2024-06-26 Created: 2024-06-26 Last updated: 2024-06-26Bibliographically approved
Petsagkourakis, I., Beni, V., Strandberg, J., Nilsson, M., Leandri, V., Lassen, B. & Sandberg, M. (2024). Polymerization of benzoxazine impregnated in porous carbons. A scalable and low-cost route to smart copper-ion absorbents with saturation indicator function. Process Safety and Environmental Protection, 184, 782-789
Open this publication in new window or tab >>Polymerization of benzoxazine impregnated in porous carbons. A scalable and low-cost route to smart copper-ion absorbents with saturation indicator function
Show others...
2024 (English)In: Process Safety and Environmental Protection, ISSN 0957-5820, E-ISSN 1744-3598, Vol. 184, p. 782-789Article in journal (Refereed) Published
Abstract [en]

Porous carbon materials are common materials used for sensor and absorbent applications. A novel approach for functionalizing porous carbons through the impregnation of porous carbon black with benzoxazine monomers, followed by thermal polymerization is introduced herein. The method not only establishes a new avenue for the functionalization of porous carbons but also endows the resulting material with both copper ion-binding and sensing properties. We showcase the versatility of the technique by illustrating that the polymerization of phenols with benzoxazine monomers serves as an extra tool to customize absorption- and sensing properties. Experimental validation involved testing the method on carbon black as a porous substrate, which was impregnated with both bisphenol-a benzoxazine and a combination of bisphenol-a benzoxazine and alizarin. The resulting materials were assessed for their dual functionality as both an absorbent and a sensor for copper ions by varied copper ion concentrations and exposure times. The dye absorption test demonstrated a notable capacity to accumulate copper ions from dilute solutions. Electrochemical characterization further confirmed the effectiveness of the modified carbons, as electrodes produced from inks were successful in detecting copper ions accumulated from 50 μM Cu2+ solutions. With this work, we aspire to set the steppingstone towards a facile functionalization of porous carbon materials towards water purification applications. © 2024 The Authors

Place, publisher, year, edition, pages
Institution of Chemical Engineers, 2024
Keywords
Absorption; Adsorbents; Carbon black; Costs; Impregnation; Metal ions; Monomers; Phenols; Polymerization; Porous materials; Absorbent; Benzoxazine; Benzoxazine monomers; Copper ions; Functionalizations; Modified carbon; Porous carbon materials; Porous carbons; Resulting materials; Sensing property; Copper
National Category
Chemical Sciences
Identifiers
urn:nbn:se:ri:diva-72816 (URN)10.1016/j.psep.2024.02.029 (DOI)2-s2.0-85185535302 (Scopus ID)
Note

This project is completely funded by The Swedish Foundation for Strategic Environmental Research (Mistra), project name MISTRA TerraClean (project no. 2015/31).

Available from: 2024-05-14 Created: 2024-05-14 Last updated: 2024-06-25Bibliographically approved
Makhinia, A., Beni, V. & Andersson Ersman, P. (2024). Screen-Printed Piezoelectric Sensors on Tattoo Paper Combined with All-Printed High-Performance Organic Electrochemical Transistors for Electrophysiological Signal Monitoring. ACS Applied Materials and Interfaces, 16(45)
Open this publication in new window or tab >>Screen-Printed Piezoelectric Sensors on Tattoo Paper Combined with All-Printed High-Performance Organic Electrochemical Transistors for Electrophysiological Signal Monitoring
2024 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 16, no 45Article in journal (Refereed) Published
Abstract [en]

This work demonstrates sensitive and low-cost piezoelectric sensors on skin-friendly, ultrathin, and conformable substrates combined with organic electrochemical transistors (OECTs) for the detection and amplification of alternating low-voltage input signals. The fully screen-printed (SP) piezoelectric sensors were manufactured on commercially available tattoo paper substrates, while the all-printed OECTs, relying on an extended gate electrode architecture, were manufactured either by solely using SP or by combining SP and aerosol jet printing (AJP) on PET substrates. Applying a low-voltage signal (±25 mV) to the gate electrode of the SP+AJP OECT results in approximately five times higher current modulation as compared to the fully SP reference OECT. The tattoo paper-based substrate enables transfer of the SP piezoelectric sensor to the skin, which in turn allows for radial pulse monitoring when combined with the SP+AJP OECT; this is possible due to the ability of the conformable sensor to convert mechanical vibrations into voltage signals along with the highly sensitive current modulation ability of the transistor device to further amplify the output signal. The results reported herein pave the way toward all-printed fully conformable wearable devices with high sensitivity to be further utilized for the real-time monitoring of electrophysiological signals.

Keywords
piezoelectric sensor OECT aerosol jet printing screen printing PEDOT:PSS printed electronics
National Category
Computer and Information Sciences
Identifiers
urn:nbn:se:ri:diva-68160 (URN)10.1021/acsami.3c10299 (DOI)2-s2.0-85179618444 (Scopus ID)
Available from: 2023-12-05 Created: 2023-12-05 Last updated: 2025-02-21Bibliographically approved
Makhinia, A., Bynens, L., Goossens, A., Deckers, J., Lutsen, L., Vandewal, K., . . . Andersson Ersman, P. (2024). Toward Sustainability in All-Printed Accumulation Mode Organic Electrochemical Transistors. Advanced Functional Materials, 34(28), Article ID 2314857.
Open this publication in new window or tab >>Toward Sustainability in All-Printed Accumulation Mode Organic Electrochemical Transistors
Show others...
2024 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 34, no 28, article id 2314857Article in journal (Refereed) Published
Abstract [en]

Abstract This study reports on the first all-printed vertically stacked organic electrochemical transistors (OECTs) operating in accumulation mode; the devices, relying on poly([4,4?-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2,2?-bithiophen-5,5?-diyl]-alt-[thieno[3,2-b]thiophene-2,5-diyl]) (pgBTTT) as the active channel material, are fabricated via a combination of screen and inkjet printing technologies. The resulting OECTs (W/L ≈5) demonstrate good switching performance; gm, norm ≈13 mS cm?1, µC* ≈21 F cm?1 V?1 s?1, ON?OFF ratio > 104 and good cycling stability upon continuous operation for 2 h. The inkjet printing process of pgBTTT is established by first solubilizing the polymer in dihydrolevoglucosenone (Cyrene), a non-toxic, cellulose-derived, and biodegradable solvent. The resulting ink formulations exhibit good jettability, thereby providing reproducible and stable p-type accumulation mode all-printed OECTs with high performance. Besides the environmental and safety benefits of this solvent, this study also demonstrates the assessment of how the solvent affects the performance of spin-coated OECTs, which justifies the choice of Cyrene as an alternative to commonly used harmful solvents such as chloroform, also from a device perspective. Hence, this approach shows a new possibility of obtaining more sustainable printed electronic devices, which will eventually result in all-printed OECT-based logic circuits operating in complementary mode.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2024
Keywords
green solvents, OECT, pgBTTT, printed electronics, sustainable
National Category
Materials Chemistry
Identifiers
urn:nbn:se:ri:diva-72318 (URN)10.1002/adfm.202314857 (DOI)2-s2.0-85187181832 (Scopus ID)
Funder
EU, Horizon 2020, 964677Vinnova, 2023-01337
Note

This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 964677 (MITICS). The authors would like to thank Jessica Åhlin for valuable electrolyte discussions. A.M. and P.A.E. thank Vinnova for financial support (grant agreement no. 2023-01337). W.M., L.B., and A.G. thank the FWO Vlaanderen for financial support (WEAVE project G025922N and Ph.D. grant 1S70122N)

Available from: 2024-03-11 Created: 2024-03-11 Last updated: 2025-02-21Bibliographically approved
Edberg, J., Boda, U., Mulla, Y., Brooke, R., Pantzare, S., Strandberg, J., . . . Armgarth, A. (2023). A Paper‐Based Triboelectric Touch Interface: Toward Fully Green and Recyclable Internet of Things. Advanced Sensor Research, 2(1), Article ID 2200015.
Open this publication in new window or tab >>A Paper‐Based Triboelectric Touch Interface: Toward Fully Green and Recyclable Internet of Things
Show others...
2023 (English)In: Advanced Sensor Research, ISSN 2751-1219, Vol. 2, no 1, article id 2200015Article in journal (Refereed) Published
Abstract [en]

The transition to a sustainable society is driving the development of green electronic solutions designed to have a minimal environmental impact. One promising route to achieve this goal is to construct electronics from biobased materials like cellulose, which is carbon neutral, non‐toxic, and recyclable. This is especially true for internet‐of‐things devices, which are rapidly growing in number and are becoming embedded in every aspect of our lives. Here, paper‐based sensor circuits are demonstrated, which use triboelectric pressure sensors to help elderly people communicate with the digital world using an interface in the form of an electronic “book”, which is more intuitive to them. The sensors are manufactured by screen printing onto flexible paper substrates, using in‐house developed cellulose‐based inks with non‐hazardous solvents. The triboelectric sensor signal, generated by the contact between a finger and chemically modified cellulose, can reach several volts, which can be registered by a portable microcontroller card and transmitted by Bluetooth to any device with an internet connection. Apart from the microcontroller (which can be easily removed), the whole system can be recycled at the end of life. A triboelectric touch interface, manufactured using printed electronics on flexible paper substrates, using cellulose‐based functional inks is demonstrated. These metal‐free green electronics circuits are implemented in an “electronic book” demonstrator, equipped with wireless communication that can control remote devices, as a step toward sustainable and recyclable internet‐of‐things devices.

National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-63313 (URN)10.1002/adsr.202200015 (DOI)
Note

The authors would like to acknowledge funding from Vinnova through theD igital Cellulose Competence Center (DCC), Diary number 2016–05193, the Swedish Foundation for Strategic Research (Smart Intra-body network; grant RIT15-0119), and the Norrköping municipality fund for research and development (Accessibility and remembering – storytelling and innovative media use in elderly care homes, 2020. Grant: KS 2020/0345). The work was also supported by Treesearch.se. The authors thank Patrik Isacsson and co-workers at Ahlstrom Munksjö for providing the paper substrates and for valuable know-how as part of the collaboration within DCC, as well as Erik Gabrielsson, Daniel Simon, Elisabet Cedersund, and Lars Herlogsson for their involvement in the work on the original Mediabook platform.

Available from: 2023-01-30 Created: 2023-01-30 Last updated: 2025-02-18Bibliographically approved
Sudheshwar, A., Beni, V., Malinverno, N., Hischier, R., Nevo, Y., Dhuiège, B., . . . Som, C. (2023). Assessing sustainability hotspots in the production of paper-based printed electronics. Flexible and Printed Electronics, 8(1), Article ID 015002.
Open this publication in new window or tab >>Assessing sustainability hotspots in the production of paper-based printed electronics
Show others...
2023 (English)In: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 8, no 1, article id 015002Article in journal (Refereed) Published
Abstract [en]

Novel printed electronics are projected to grow and be manufactured in the future in large volumes. In many applications, printed electronics are envisaged as sustainable alternatives to conventional (PCB-based) electronics. One such application is in the semi-quantitative drug detection and point-of-care device called ‘GREENSENSE’ that uses paper-based printed electronics. This paper analyses the carbon footprint of GREENSENSE in order to identify and suggest means of mitigating disproportionately high environmental impacts, labeled ‘sustainability hotspots’, from materials and processes used during production which would be relevant in high-volume applications. Firstly, a life cycle model traces the flow of raw materials (such as paper, CNCs, and nanosilver) through the three ‘umbrella’ processes (circuit printing, component mounting, and biofunctionalization) manufacturing different electronic components (the substrate, conductive inks, energy sources, display, etc) that are further assembled into GREENSENSE. Based on the life cycle model, life cycle inventories are modeled that map out the network of material and energy flow throughout the production of GREENSENSE. Finally, from the environmental impact and sustainability hotspot analysis, both crystalline nanocellulose and nanosilver were found to create material hotspots and they should be replaced in favor of lower-impact materials. Process hotspots are created by manual, lab-, and pilot-scale processes with unoptimized material consumption, energy use, and waste generation; automated and industrial-scale manufacturing can mitigate such process hotspots. © 2023 The Author(s).

Place, publisher, year, edition, pages
Institute of Physics, 2023
Keywords
carbon footprint, life cycle assessment, printed electronics, sustainability hotspots, Environmental impact, Life cycle, Substrates, Sustainable development, Drug detection, Hotspots, Large volumes, Life cycle model, Nano silver, PCB-based, Point of care, Sustainability hotspot, Electronics, Energy, Paper, Production, Raw Materials
National Category
Environmental Engineering
Identifiers
urn:nbn:se:ri:diva-63978 (URN)10.1088/2058-8585/acacab (DOI)2-s2.0-85146865282 (Scopus ID)
Note

 Funding details: Horizon 2020 Framework Programme, H2020, 761000; Funding text 1: This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 761000 GREENSENSE.

Available from: 2023-02-16 Created: 2023-02-16 Last updated: 2023-12-06Bibliographically approved
Mulla, Y., Isacsson, P., Dobryden, I., Beni, V., Östmark, E., Håkansson, K. & Edberg, J. (2023). Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment. Global Challenges, 7(4)
Open this publication in new window or tab >>Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment
Show others...
2023 (English)In: Global Challenges, E-ISSN 2056-6646, Vol. 7, no 4Article in journal (Refereed) Published
Abstract [en]

Wood is an inherently hygroscopic material which tends to absorb moisture from its surrounding. Moisture in wood is a determining factor for the quality of wood being employed in construction, since it causes weakening, deformation, rotting, and ultimately leading to failure of the structures resulting in costs to the economy, the environment, and to the safety of residents. Therefore, monitoring moisture in wood during the construction phase and after construction is vital for the future of smart and sustainable buildings. Employing bio-based materials for the construction of electronics is one way to mitigate the environmental impact of such electronics. Herein, a bio-graphene sensor for monitoring the moisture inside and around wooden surfaces is fabricated using laser-induced graphitization of a lignin-based ink precursor. The bio-graphene sensors are used to measure humidity in the range of 10% up to 90% at 25 °C. Using laser induced graphitization, conductor resistivity of 18.6 Ω sq−1 is obtained for spruce wood and 57.1 Ω sq−1 for pine wood. The sensitivity of sensors fabricated on spruce and pine wood is 2.6 and 0.74 MΩ per % RH. Surface morphology and degree of graphitization are investigated using scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis methods. © 2023 The Authors. 

Place, publisher, year, edition, pages
John Wiley and Sons Inc, 2023
Keywords
cellulose, humidity sensors, laser-induced graphene, lignin, moisture sensors, wood
National Category
Wood Science
Identifiers
urn:nbn:se:ri:diva-64231 (URN)10.1002/gch2.202200235 (DOI)2-s2.0-85148603362 (Scopus ID)
Note

Article; Export Date: 15 March 2023; Correspondence Address: J. Edberg, RISE Research Institutes of Sweden, Sweden;

 The authors would like to acknowledge funding from Vinnova for the Digital Cellulose Competence Center (DCC), Diary number 2016–05193, as well as financial support from Stora Enso AB. The work was also supported by Treesearch.se. Dr. Robert Brooke is thankfully acknowledged for taking the picture and video for Figure 7 and Video S1 , Supporting Information respectively.

Available from: 2023-03-20 Created: 2023-03-20 Last updated: 2024-05-27Bibliographically approved
Andersson Ersman, P., Freitag, K., Nilsson, M., Åhlin, J., Brooke, R., Nordgren, N., . . . Beni, V. (2023). Electrochromic Displays Screen Printed on Transparent Nanocellulose-Based Substrates. Advanced Photonics Research, Article ID 2200012.
Open this publication in new window or tab >>Electrochromic Displays Screen Printed on Transparent Nanocellulose-Based Substrates
Show others...
2023 (English)In: Advanced Photonics Research, ISSN 2699-9293, article id 2200012Article in journal (Refereed) Published
Abstract [en]

Manufacturing of electronic devices via printing techniques is often considered to be an environmentally friendly approach, partially due to the efficient utilization of materials. Traditionally, printed electronic components (e.g., sensors, transistors, and displays) are relying on flexible substrates based on plastic materials; this is especially true in electronic display applications where, most of the times, a transparent carrier is required in order to enable presentation of the display content. However, plastic-based substrates are often ruled out in end user scenarios striving toward sustainability. Paper substrates based on ordinary cellulose fibers can potentially replace plastic substrates, but the opaqueness limits the range of applications where they can be used. Herein, electrochromic displays that are manufactured, via screen printing, directly on state-of-the-art fully transparent substrates based on nanocellulose are presented. Several different nanocellulose-based substrates, based on either nanofibrillated or nanocrystalline cellulose, are manufactured and evaluated as substrates for the manufacturing of electrochromic displays, and the optical and electrical switching performances of the resulting display devices are reported and compared. The reported devices do not require the use of metals and/or transparent conductive oxides, thereby providing a sustainable all-printed electrochromic display technology.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2023
Keywords
electrochromic displays, nanocellulose, organic electronics, PEDOT:PSS, printed electronics
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:ri:diva-59998 (URN)10.1002/adpr.202200012 (DOI)
Note

This project has received funding from the European Union's Horizon 2020 research and innovation program under the grant agreement no. 761000—GREENSENSE. Additional financial support was provided by the Swedish Foundation for Strategic Research (grant agreement no. EM16-0002).

Available from: 2022-08-26 Created: 2022-08-26 Last updated: 2023-12-06Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-6889-0351

Search in DiVA

Show all publications