Change search
Link to record
Permanent link

Direct link
Publications (4 of 4) Show all publications
Kjellin, P., Danielsson, K., Håkansson, J., Agrenius, K., Andersson, T. & Stenlund, P. (2022). Biomechanical and histomorphometric evaluation of skin integration on titanium and PEEK implants with different surface treatments. Journal of materials science. Materials in medicine, 33(10), Article ID 68.
Open this publication in new window or tab >>Biomechanical and histomorphometric evaluation of skin integration on titanium and PEEK implants with different surface treatments
Show others...
2022 (English)In: Journal of materials science. Materials in medicine, ISSN 0957-4530, E-ISSN 1573-4838, Vol. 33, no 10, article id 68Article in journal (Refereed) Published
Abstract [en]

Percutaneous implants are frequently affected by bacterial growth at the skin-implant interface. Integration between implant and surrounding skin is important to prevent bacteria from spreading to the underlying tissue. The standard method to evaluate skin-implant integration is by histomorphometry on samples which have been placed in tissue grown in vivo or ex vivo. In this study, a biomechanical method was developed and evaluated. The integration of implants into porcine skin was studied in an ex vivo model, where pig skin samples were cultivated in a nutrient solution. Cylindrical shaped implants, consisting of polyether ether ketone (PEEK) and titanium (Ti) with different surface treatments, were implanted in the skin tissue and the skin was grown in nutrient solution for 2 weeks. The implants were then extracted from the implantation site and the mechanical force during extraction was measured as a quantitative assessment of skin-implant integration. Implants from each group were also processed for histomorphometry and the degree of epidermal downgrowth (ED) and tissue to implant contact (TIC) was measured. A higher mean pullout force was observed for the PEEK implants compared to the Ti implants. Applying nanosized hydroxyapatite (HA) on Ti and PEEK increased the pullout force compared to uncoated controls, 24% for machined and 70% for blasted Ti, and 51% for machined PEEK. Treatment of Ti and PEEK with nanosized zirconium phosphate (ZrP) did not increase the pullout force. The histomorphometry analysis showed correlation between ED and pullout force, where the pullout force was inversely proportional to ED. For TIC, no significant differences were observed between the groups of same material (i.e. Ti, Ti+HA, Ti+ZrP, and PEEK, PEEK + HA, PEEK + ZrP), but it was significantly higher for PEEK compared to Ti. Scanning electron microscopy analysis was done on samples before and after the pullout tests, showing that the ZrP coating was unaffected by the 2 week ex vivo implantation and pullout procedure, no dissolution or detachment of the coating was observed. For the HA coating, a loss of coating was seen on approximately 5% of the total surface area of the implant. [Figure not available: see fulltext.] © 2022, The Author(s).

Place, publisher, year, edition, pages
Springer, 2022
Keywords
Bacteria, Biocompatibility, Biomechanics, Coatings, Ethers, Integration, Ketones, Mammals, Nutrients, Scanning electron microscopy, Tissue, Titanium carbide, Bacterial growth, Ex-vivo, Histomorphometry, Implant interfaces, In-vivo, Nutrient solution, Pullout force, Skin implants, Titania, Zirconium phosphate, Hydroxyapatite, nanohydroxyapatite, nanomaterial, polyetheretherketone, titanium, unclassified drug, benzophenone derivative, ether derivative, ketone, macrogol, polymer, animal experiment, animal tissue, Article, bone tissue, coating (procedure), controlled study, dissolution, ex vivo study, force, implantation, morphometry, nonhuman, quantitative analysis, surface area, surface property, Yorkshire pig, animal, osseointegration, pig, tooth implant, Animals, Benzophenones, Dental Implants, Durapatite, Polyethylene Glycols, Polymers, Surface Properties, Swine
National Category
Other Medical Biotechnology
Identifiers
urn:nbn:se:ri:diva-61212 (URN)10.1007/s10856-022-06687-y (DOI)2-s2.0-85139239686 (Scopus ID)
Note

Funding details: 214487; Funding details: Sahlgrenska Akademin; Funding text 1: Toponova AB, Halmstad, Sweden, is acknowledged for the interferometry measurements. Petra Hammarström Johansson at the Institute of Odontology, Sahlgrenska Academy, Gothenburg, is acknowledged for the histology processing. The study was partly financed by Region Västra Götaland FoU-card advanced (Dnr 214487); Funding text 2: Toponova AB, Halmstad, Sweden, is acknowledged for the interferometry measurements. Petra Hammarström Johansson at the Institute of Odontology, Sahlgrenska Academy, Gothenburg, is acknowledged for the histology processing. The study was partly financed by Region Västra Götaland FoU-card advanced (Dnr 214487)

Available from: 2022-12-02 Created: 2022-12-02 Last updated: 2024-06-20Bibliographically approved
Andren, O. C. J., Ingverud, T., Hult, D., Håkansson, J., Bogestål, Y., Caous, J. S., . . . Malkoch, M. (2019). Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings. Advanced Healthcare Materials, Article ID e1801619.
Open this publication in new window or tab >>Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings
Show others...
2019 (English)In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, article id e1801619Article in journal (Refereed) Published
Abstract [en]

A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged β-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G' = 0.5-8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.

Keywords
antibacterial, dendrimer, hydrogels, surgical-site infection
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-37820 (URN)10.1002/adhm.201801619 (DOI)30735288 (PubMedID)2-s2.0-85061270456 (Scopus ID)
Available from: 2019-03-01 Created: 2019-03-01 Last updated: 2024-06-20Bibliographically approved
Håkansson, J., Ringstad, L., Umerska, A., Johansson, J., Andersson, T., Boge, L., . . . Mahlapuu, M. (2019). Characterization of the in vitro, ex vivo, and in vivo Efficacy of the Antimicrobial Peptide DPK-060 Used for Topical Treatment. Frontiers in Cellular and Infection Microbiology, 9, Article ID 174.
Open this publication in new window or tab >>Characterization of the in vitro, ex vivo, and in vivo Efficacy of the Antimicrobial Peptide DPK-060 Used for Topical Treatment
Show others...
2019 (English)In: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 9, article id 174Article in journal (Refereed) Published
Abstract [en]

Antimicrobial peptides, also known as host defense peptides, have recently emerged as a promising new category of therapeutic agents for the treatment of infectious diseases. This study evaluated the preclinical in vitro, ex vivo, and in vivo antimicrobial activity, as well as the potential to cause skin irritation, of human kininogen-derived antimicrobial peptide DPK-060 in different formulations designed for topical delivery. We found that DPK-060 formulated in acetate buffer or poloxamer gel caused a marked reduction of bacterial counts of Staphylococcus aureus in vitro (minimum microbicidal concentration <5 μg/ml). We also found that DPK-060 in poloxamer gel significantly suppressed microbial survival in an ex vivo wound infection model using pig skin and in an in vivo mouse model of surgical site infection (≥99 or ≥94% reduction in bacterial counts was achieved with 1% DPK-060 at 4 h post-treatment, respectively). Encapsulation of DPK-060 in different types of lipid nanocapsules or cubosomes did not improve the bactericidal potential of the peptide under the applied test conditions. No reduction in cell viability was observed in response to administration of DPK-060 in any of the formulations tested. In conclusion, the present study confirms that DPK-060 has the potential to be an effective and safe drug candidate for the topical treatment of microbial infections; however, adsorption of the peptide to nanocarriers failed to show any additional benefits.

Keywords
DPK-060, antimicrobial peptides, cubosomes, lipid nanocapsules, skin infections
National Category
Natural Sciences
Identifiers
urn:nbn:se:ri:diva-39066 (URN)10.3389/fcimb.2019.00174 (DOI)31192163 (PubMedID)2-s2.0-85068146000 (Scopus ID)
Available from: 2019-06-26 Created: 2019-06-26 Last updated: 2024-07-01Bibliographically approved
Boge, L., Hallstensson, K., Ringstad, L., Johansson, J., Andersson, T., Davoudi, M., . . . Andersson, M. (2019). Cubosomes for topical delivery of the antimicrobial peptide LL-37. European journal of pharmaceutics and biopharmaceutics, 134, 60-67
Open this publication in new window or tab >>Cubosomes for topical delivery of the antimicrobial peptide LL-37
Show others...
2019 (English)In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 134, p. 60-67Article in journal (Refereed) Published
Abstract [en]

In this study, the use of cubosomes for topical delivery of the antimicrobial peptide (AMP) LL-37 was investigated. Topical delivery of AMPs is of great interest for treatment of skin infections caused by bacteria, such as Staphylococcus aureus. AMP containing cubosomes were produced by three different preparation protocols and compared: (i) pre-loading, where LL-37 was incorporated into a liquid crystalline gel, which thereafter was dispersed into nanoparticles, (ii) post-loading, where LL-37 was let to adsorb onto pre-formed cubosomes, and (iii) hydrotrope-loading, where LL-37 was incorporated during the spontaneously formed cubosomes in an ethanol/glycerol monooleate mixture. Particle size and size distribution were analyzed using dynamic light scattering (DLS), liquid crystalline structure by small angle x-ray scattering (SAXS) and release of LL-37 by a fluorescamine assay. Proteolytic protection of LL-37 as well as bactericidal effect after enzyme exposure was investigated. The skin irritation potential of cubosomes was examined by an in vitro epidermis model. Finally, the bacterial killing property of the cubosomes was examined by an ex vivo pig skin wound infection model with Staphylococcus aureus. Data showed that a high loading of LL-37 induced formation of vesicles in case of cubosomes prepared by sonication (pre-loading). No release of LL-37 was observed from the cubosomes, indicating strong association of the peptide to the particles. Proteolysis studies showed that LL-37 was fully protected against enzymatic attacks while associated with the cubosomes, also denoting strong association of the peptide to the particles. As a consequence, bactericidal effect after enzyme exposure remained, compared to pure LL-37 which was subjected to proteolysis. No skin irritation potential of the cubosomes was found, thus enabling for topical administration. The ex vivo wound infection model showed that LL-37 in pre-loaded cubosomes killed bacteria most efficient.

Keywords
alcohol, cathelicidin antimicrobial peptide LL 37, cubosome, drug carrier, fluorescamine, glycerol oleate, hydrotrope, nanoparticle, unclassified drug
National Category
Chemical Sciences
Identifiers
urn:nbn:se:ri:diva-37674 (URN)10.1016/j.ejpb.2018.11.009 (DOI)30445164 (PubMedID)2-s2.0-85056876558 (Scopus ID)
Available from: 2019-01-29 Created: 2019-01-29 Last updated: 2024-07-01Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0001-3744-9325

Search in DiVA

Show all publications