Change search
Link to record
Permanent link

Direct link
Publications (4 of 4) Show all publications
Hildebrandt, F., Kjellin, M., Aronsson, M., Östling, J., Olsson, E. & Brachner, M. (2024). Deliverable 25.1 Report on the basic functional and technical specifications for the realisation of the technical enablers of Seamless Freight, also including the final specification input for FP1. European Union
Open this publication in new window or tab >>Deliverable 25.1 Report on the basic functional and technical specifications for the realisation of the technical enablers of Seamless Freight, also including the final specification input for FP1
Show others...
2024 (English)Report (Other academic)
Abstract [en]

The Seamless Freight cluster is part of the TRANS4M-R project and the Europe’s Rail initiative. It aims to deliver an essential contribution towards the modernization, digitalization and harmonization of multimodal rail freight. By addressing various technical enablers identified in the MAWP, Seamless Freight bridges the gaps between actors, countries, systems, processes and transport modes. Against this background, this Deliverable is the main output of the specification phase and includes the relevant requirements, both functional and non-functional, the main use-cases and use-case environments as well as a description of relevant systems, data types, processes and challenges. These specifications build on the basic requirements identified in the scope of the Deliverables D25.2 and D25.3. The contents of this deliverable are the result of an extensive and iterative process, involving relevant stakeholder groups (IMs, RUs, TOs, YOs, CTOs and shippers) that are all part of the TRANS4M-R team. The specifications are structured according to the different work packages, in which the solutions, that are necessary to fulfil the objectives of Seamless Freight, will be developed. True seamless planning must result in perfectly consistent planning and allowing for smooth transition and continuity for all actors involved along the entire transport chain as well as all assets required for operating the railway system. Seamless planning therefore encompasses all planning horizons (e.g. long- and short-term as well as real-time), all planning environments (e.g. yards, terminals and all connecting infrastructure) and involves a variety of complex planning systems and processes. All these aspects feed the derivation of requirements for planning systems and their interfaces, with additional consideration of the interconnection to dispatching and keeping the information on line and network capacity updated for all actors, in order to achieve true seamless planning. Dynamic Dispatching has focussed on the constraints of today, that hinder optimized processes due to lack of real-time information. An intensive exchange with end customers and stakeholders has led to several use cases which shall at an international level prove that harmonization and the dynamic adaption of tasks due to real-time information will lead to higher efficiency and maximizing the use of existing infrastructure. Intermodal Prediction Systems, forecasting both the ETA and the ETD for pre-defined milestones by using advanced machine-learning models, enhance the transparency and reliability of rail freight. The systems use various TAF TSI and EDIGES message types as basis input. Its quality is evaluated using pre-defined TAF TSI KPIs. Main applications for the prediction values are the optimisation of terminal and yard processes as well as the assignment and planning of rolling stock utilization (Asset Warehouse). The concept of Standardised European Railway Checkpoints is a further development of the previous work carried out in Shift2Rail and the concept of “Intelligent Video Gates” (IVG). The main objective was thus a further development of the previous work. Moreover, in FP3 Checkpoints are also developed but at main lines for both freight and passenger trains. Hence, one main aim was to give a clear and through background description, including existing similar systems that the IMs in T25.4 currently possess. Process descriptions were carried out for three types of operational stops for freight trains; intermodal terminals, marshalling yards and borders. Opportunities for improving these processes though the use of Checkpoints as well as a vast set of use cases were identified. Functional and non-requirements were developed. Based on the process analysis and the defined requirements, technical specifications were outlined for detection technologies and for data sharing. Albeit technical standardisation has been addressed, further work is needed to be carried jointly between the System Pillar sub-project Harmonized European Railway Diagnostics (Herd), FP5 T25.4/WP29 and FP3 WP7. Thus, the specifications outlined in this report will be the basis for a standardised development and installation of Checkpoints within WP29. Multimodal Integration has focussed on the constraints of today, that hinders simple bookings of freight on rail. Three primary reasons have been identified that will be tackled by use cases. The time-consuming process of finding existing freight train services, the complexity to book services if more than one primary supplying company is involved and the difficulty to establish new services where today’s offering is not yet matching the market demand. All shall demonstrate that harmonized and standardized process and data exchange will lead to higher usage of existing infrastructure due to lowering entry barriers. All this requires a high degree of collaboration between the involved actors both within and often across national borders. Today, there is a call for better synchronisation within and between transport practices. Big hopes are being placed on digitalisation as an enabler and means for integrated and sustainable performance along the multi-modal supply chain. The primary objective for enabling data exchange is to provide a framework that allows a seamless and harmonised exchange of data. This framework aims to facilitate an increased data availability and quality by reducing technical and administrative barriers for the generation and exchange of data in the project. This framework will be built on existing developments rather than introducing new elements.

Place, publisher, year, edition, pages
European Union, 2024. p. 393
Keywords
Rail Freight, Seamless Freight, Europe’s Rail, Seamless Planning, Dynamic Dispatching, Intermodal Prediction Systems, Standardised European Railway Checkpoints, Intelligent Video Gates (IVG), Multimodal Integration, Seamless Data Exchange
National Category
Civil Engineering
Identifiers
urn:nbn:se:ri:diva-76345 (URN)
Available from: 2025-01-13 Created: 2025-01-13 Last updated: 2025-01-13Bibliographically approved
Aronsson, M. & Kjellin, M. (2022). Reservkapacitet i tilldelningsprocessen (RIT) – Slutrapport.
Open this publication in new window or tab >>Reservkapacitet i tilldelningsprocessen (RIT) – Slutrapport
2022 (Swedish)Report (Other academic)
Abstract [en]

Reserve capacity in Railway capacity allocation. Each year railway undertakings (RUs) apply for capacity to run trains on the railway infrastructure. The infrastructure manager (IM) should make a complete timetable for all applications together with capacity restrictions when maintenance etc must be performed. In this process, referred to as the capacity allocation process, the IM should also schedule some reserve capacity for later use during the execution of the plan. The reserve capacity then competes with the applied capacity of the RUs, since it is only motivated to introduce reserve capacity where there is a capacity scarcity. If there is plenty of rest capacity (capacity that no one applied for in the yearly process), then there is no need for reserve capacity. Since reserve capacity competes with all other capacity applied for in the yearly capacity allocation process, the amount, location and lines where reserve capacity is introduced must be founded in fair and sound principles in order for the RUs in the yearly process to accept the costs taken to make room for the reserve capacity. This report addresses such models and methods for the Swedish capacity allocation process. The report in part summarizes in condensed form the two earlier reports that have been published, as well as reports some new material regarding process descriptions, data analyses of previous years’ timetables and interviews with three different RUs. The report also gives some recommendations to the Swedish IM Trafikverket about tools for representing reserve capacity, design of the process and how to allocate paths based on reserve capacity once capacity has been reserved. One key recommendation is that a new timetabling object should be introduced, called Capacity reservation, CR. A CR is a named (has identity) timetabling object that can be used in a train path in the future. If an RU wants to use such a CR in a train path, the RU must apply for it and exceed a valuation criterion to be able to get it. This valuation criterion is a connection to the costs that other yearly applied traffic has to take in order to make room for the reserve capacity. CRs are managed (not “allocated”) by the IM and are not allocated to an RU or entrepreneur until they have applied for it. CRs are available for allocation after the timetable is finalized and the short-term process (ad hoc) is started, including the process step Late path requests. The report also relates the models and methods to the upcoming new capacity allocation process called Timetabling and capacity redesign, TTR. TTR introduces Advance planning, i.e. planning in advance of the RU allocations. For this to work, it is crucial to be able to reserve capacity in various forms, both segmentation and reserve over time (safeguarding).

Publisher
p. 66
Series
RISE Rapport ; 2022:115
Keywords
railway, timetabling, capacity allocation, reserve capacity
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:ri:diva-61171 (URN)978-91-89711-94-5 (ISBN)
Available from: 2022-11-17 Created: 2022-11-17 Last updated: 2024-06-20Bibliographically approved
Aronsson, M. & Kjellin, M. (2022). RIT – Reservkapacitet i tilldelningsprocessen : Underlagsrapport 2.
Open this publication in new window or tab >>RIT – Reservkapacitet i tilldelningsprocessen : Underlagsrapport 2
2022 (Swedish)Report (Other academic)
Abstract [sv]

Svensk järnvägslagstiftning ställer krav på infrastrukturförvaltaren att denne skall reservera kapacitet under den årliga kapacitetstilldelningsprocessen för tilldelning under tågplanens genomförande. Sådan så kallad reservkapacitet, till skillnad mot restkapacitet som är kapacitet som blir över vid årlig tilldelning, skall möjliggöra en följsamhet för tillkommande behov men även hantering av uppkommande förändringar så att effektiv användning av infrastrukturen säkerställs. Forsknings- och innovationsprojektet RIT, Reservkapacitet i Tilldelningsprocessen, studerar hur reservkapacitet kan åstadkommas med beaktande av krav på transparens, och rättvisa för aktörerna samt nytta för samhället. Vägledande för resultaten i RIT är att järnvägens aktörer skall kunna ställa sig bakom de principer som projektet RIT tar fram. Denna underlagsrapport två fokuserar på om och hur ett underlag för avsättning av reservkapacitet skall kunna tas fram. Två metoder har identifierats, dels att undersöka tidigare tågplaner och mängden sökta tåglägen under tågplanernas genomförande, dels möjligheterna att genom intervjuer och årligt återkommande marknadsundersökningar från aktörerna kunna identifiera behovet av reservkapacitet. Denna rapport omfattar huvudsakligen den första av de två möjliga sätten att identifiera reservkapacitet. En process som på ett grovt plan beskriver en möjlig framtida hantering av reservkapacitet ges också i rapporten. Denna process är sammanvävd med den nuvarande kapacitetstilldelningsprocessen. Ett huvudresultat i rapporten är att det är svårt att förutse nästa tågplans behov av reservkapacitet baserat på data som finns tillgänglig idag. Tidigare ansökningar visar endast det som den sökande tror sig kunna få (eller har fått reda på att denna troligen kan få sig tilldelat) vilket inte avspeglar det faktiska behovet som den sökande egentligen skulle vilja söka. Saknas gör dessutom alla de ansökningar som den sökande inte finner någon mening att söka (då t.ex. kapaciteten på nyckelsträckor är fullbelagd). Vidare söks kapacitet som skulle kunna sökas på reservkapacitet (om den funnits) idag spekulativt i den årliga tilldelningen, dvs den sökande söker det denne tror att denne behöver. Sammantaget gör detta, tillsammans med alla tåglägen som söks under tågplanens genomförande i revisionsplaneringen på grund av banarbeten, att dagens data om tillkommande trafik under tågplanen inte utgör en bra grund för att undersöka behovet av nästkommande tågplans behov.

Publisher
p. 52
Series
RISE Rapport ; 2022:63
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:ri:diva-59299 (URN)978-91-89711-03-7 (ISBN)
Available from: 2022-06-01 Created: 2022-06-01 Last updated: 2024-06-20Bibliographically approved
Gestrelius, S., Kjellin, M. & Backman, M. (2020). Slutrapport for Grafiska Prognostidtabeller. Kista: RISE Research Institutes of Sweden
Open this publication in new window or tab >>Slutrapport for Grafiska Prognostidtabeller
2020 (Swedish)Report (Other academic)
Abstract [sv]

Rapporten beskriver det arbete som utfördes i projektet Grafiska Prognostidtabeller (GRAPRO). Projektets mål var att undersöka om optimering kan vara ett stöd för kapacitetsanalytiker när en tidtabell ska konstrueras utifrån prognostiserade trafikdata. Rapporten inleds med en genomgång av analysmetoder som Trafikverket använder för att bedöma vilken trafik en viss infrastrukturutveckling kan hantera, och beskriver hur optimering passar in bland dessa metoder. Sedan presenteras den metodutveckling som gjorts inom projektet, och databehov och tillgång diskuteras. Metoden testas på ett exempelfall med infrastrukturförändringar i Skåne, och de resulterande tidtabellerna analyseras. Under projektet gång, och under arbetet med exempelfallet, identifierades ett flertal områden där ytterligare utveckling behövs för att den presenterade metoden ska kunna användas av en kapacitetsanalytiker, och rapporten avslutas med att dessa utvecklingsbehov diskuteras.

Place, publisher, year, edition, pages
Kista: RISE Research Institutes of Sweden, 2020. p. 37
Series
RISE Rapport ; 2020:20
Keywords
järnväg, tidtabell, optimering
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:ri:diva-44402 (URN)978-91-89167-00-1 (ISBN)
Projects
Grafiska Prognostidtabeller
Funder
Swedish Transport Administration
Available from: 2020-03-06 Created: 2020-03-06 Last updated: 2024-06-20Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0009-0001-9738-9969

Search in DiVA

Show all publications