Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (10 of 66) Visa alla publikationer
Nilsson, K., Behaderovic, D., Ahlgren, S., Ziegler, F. & Wocken, Y. (2024). Branschgemensam metodik för att beräkna klimatavtryck för livsmedelsprodukter.
Öppna denna publikation i ny flik eller fönster >>Branschgemensam metodik för att beräkna klimatavtryck för livsmedelsprodukter
Visa övriga...
2024 (Svenska)Rapport (Övrigt vetenskapligt)
Abstract [sv]

På uppdrag av Livsmedelsföretagen, LI, och Svensk Dagligvaruhandel, SvDH, har RISE tagit fram en branschgemensam metodik för att beräkna klimatavtryck av livsmedels-produkter. Framtagen klimatberäkningsmetodik bygger på den underlagsrapport om metodik och standarder för beräkning av klimatavtryck på livsmedelsprodukter som RISE tog fram i uppdrag av Li och SvDH, våren 2023 (RISE, 2023). Metodiken gäller för klimatberäkning av • Producentspecifikt och produktrepresentativt klimatavtryck av livsmedel – i rapporten kallat Representativt klimatavtryck. • Generiska klimattal av livsmedel – i rapporten kallat Generiskt klimattal.

Förlag
s. 83
Serie
RISE Rapport ; 2024:29
Nationell ämneskategori
Livsmedelsvetenskap
Identifikatorer
urn:nbn:se:ri:diva-72375 (URN)978-91-89896-77-2 (ISBN)
Tillgänglig från: 2024-03-22 Skapad: 2024-03-22 Senast uppdaterad: 2024-03-22Bibliografiskt granskad
Ziegler, F., Nistad, A. A., Langeland, M., Wocken, Y., Hognes, E. S. & Mehta, S. (2024). Greenhouse gas emission reduction opportunities for the Norwegian salmon farming sector - can they outweigh growth?. Aquaculture, 581, Article ID 740431.
Öppna denna publikation i ny flik eller fönster >>Greenhouse gas emission reduction opportunities for the Norwegian salmon farming sector - can they outweigh growth?
Visa övriga...
2024 (Engelska)Ingår i: Aquaculture, ISSN 0044-8486, E-ISSN 1873-5622, Vol. 581, artikel-id 740431Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Norwegian farmed Atlantic salmon is a nutritious type of food in increasing demand and although production has stagnated and is faced by various challenges, it is likely to continue to expand in the future. We present results from a detailed greenhouse gas emission assessment of the most important Norwegian farmed salmon export products along with improvement measures. By scaling up both baseline results and reduction opportunities, based on growth projections, we estimate current and future emissions of the sector as a whole. We show that export of gutted salmon to Europe by truck dominates Norwegian salmon exports, not only in volume and value, but also in emissions, followed by export of fresh gutted salmon and fillets to Asia and fillets to the US by air. The cumulative greenhouse gas emissions are dominated by feed production followed by emissions from overseas airfreighting of fresh products. The five most important emission reduction measures, based only on existing technology and without particular order were 1) slightly increased feed efficiency, 2) increased utilization of side streams occurring in secondary processing after export, 3) seafreight to market instead of road and air, 4) higher energy efficiency and cleaner energy sources, and 5) changed feed composition. Collectively, they have the potential to reduce greenhouse gas emissions of current production by 60%, from 5.2 to 2.1 million tonnes of CO2e, assuming the same relative importance of each supply chain. This implies that a medium growth-scenario, representing more than a doubling of the volume of salmon farmed to 3.3 million tonnes, would be possible while reducing total sector emissions by 16% if the improvement measures were fully implemented. For larger reductions, either lower growth or more ambitious implementation of improvement measures is needed. Although greenhouse gas emissions are often linked to resource efficiency and wider sustainability, this is not always the case, and it is important to avoid shifting burdens from climate to e.g. eutrophication or biodiversity impacts. However, many environmental impacts of salmon farming are centered around feed efficiency, and even problems with welfare, escapees, and in part eutrophication are reflected in lower feed efficiency resulting in higher greenhouse gas emissions. In addition to the systematic collection of robust data for more continuous monitoring of greenhouse gas emission performance over time, we therefore recommend identifying additional indicators to monitor to ensure the sector develops not only towards climate neutrality but also towards broader sustainability. 

Ort, förlag, år, upplaga, sidor
Elsevier B.V., 2024
Nationell ämneskategori
Vilt- och fiskeförvaltning Miljöledning
Identifikatorer
urn:nbn:se:ri:diva-68574 (URN)10.1016/j.aquaculture.2023.740431 (DOI)2-s2.0-85178097476 (Scopus ID)
Anmärkning

The Norwegian seafood research fund (FHF) is acknowledged for funding the work.

Tillgänglig från: 2023-12-13 Skapad: 2023-12-13 Senast uppdaterad: 2024-03-25Bibliografiskt granskad
Hornborg, S., Axelsson, A. F. & Ziegler, F. (2023). Driver svensk konsumtion av odlad lax ökat svenskt industrifiske i Östersjön?.
Öppna denna publikation i ny flik eller fönster >>Driver svensk konsumtion av odlad lax ökat svenskt industrifiske i Östersjön?
2023 (Svenska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Does Swedish consumption of farmed salmon drive increase in industrial fisheries in the Baltic Sea?

Swedish fishing in the Baltic Sea with large vessels to produce fish meal and oil, and the deteriorating conditions for small-scale fishing and herring stocks, has in recent years been heavily debated in media. A link between current large-scale fishing and Swedish consumption of Norwegian salmon is often made, i.e., that Norwegian salmon farming is a driver behind the recent development. The Swedish Fishing Industry Association has therefore commissioned this report with the aim to improve current knowledge. The overarching questions are whether i) there is a dependency, and ii) if Norwegian salmon farming can be considered a driver for Swedish large-scale fishing of herring in the Baltic Sea. It is found that the development from the 1950s needs to be taken into account to fully understand today's situation. The current Swedish fishing fleet in the Baltic Sea is in line with national fisheries’ objectives to make pelagic fishing more efficient, and the development of stocks is in turn governed by the EU Common Fisheries Policy – both independent to both Swedish consumption and Norwegian salmon farming. Several factors affect destination of landings, where an important aspect is quality of the catch. Current fishing pattern, with fewer and larger boats, have resulted in considerably larger landing volumes per vessel – compromising opportunities for processing for direct consumption. The exact link between Swedish fisheries and Norwegian salmon farming is however complicated. The different traceability systems for fish caught for feed versus direct consumption are not integrated, although detailed information "one step forward, one step back" is available from individual actors. This challenge an effective tracing of a certain fish volume caught for fish meal and oil production to the final use. Overall, available data find that the total share of herring (from all waters) in one kilo Norwegian salmon feed is small (3.77%), and a very small fraction is based on fisheries directly destined for fish meal and oil production (0.8%) – the largest share is based on trimmings from processing for direct consumption. However, most of the Swedish landings of herring from the Baltic Sea is directly destined for fishmeal and oil production in Denmark. The largest share of the total production in Denmark goes to aquaculture, mainly to Norway. Conclusions are that i) Norwegian salmon farming does not appear to use herring from the Baltic Sea to a large extent, although a large share of the fish meal and oil production from the Baltic Sea are destined to aquaculture, and ii) it is the fisheries management (EU and Swedish) that has shaped the fishing that exists today by creating the basic conditions. The report concludes with recommendations for follow-up measures to reduce conflict between fishing for feed and direct consumption, and to better ensure full traceability even for fish intended for feed production.

Förlag
s. 42
Serie
RISE Rapport ; 2023:100
Nyckelord
herring, Baltic Sea, fishmeal, fish oil, salmon, fisheries
Nationell ämneskategori
Fisk- och akvakulturforskning
Identifikatorer
urn:nbn:se:ri:diva-67755 (URN)978-91-89821-78-1 (ISBN)
Anmärkning

Fiskbranschens Riksförbund (FR) har gett RISE i uppdrag att göra en kartläggning av var det svenska fiskets fångster från Östersjön tar vägen samt eventuella orsaker bakom. 

Tillgänglig från: 2023-11-15 Skapad: 2023-11-15 Senast uppdaterad: 2024-03-01Bibliografiskt granskad
Hornborg, S., Bianchi, M. A., Thomas, J.-B., Wocken, Y., Axelsson, A. F., Sanders, C., . . . Ziegler, F. (2023). Environmental and nutritional perspectives of algae.
Öppna denna publikation i ny flik eller fönster >>Environmental and nutritional perspectives of algae
Visa övriga...
2023 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Algae have gained increasing attention as promising food from both an environmental and nutritional perspective. However, current understanding is still limited. This report summarizes the status of knowledge for this emerging sector, focusing on micro- and macroalgae species most relevant for Europe (particularly Sweden). Environmental impacts, with focus on climate, are evaluated through literature reviews and analysis of existing life cycle assessments (LCAs), and nutritional potential in the form of data compilation and calculation of nutrient density scores. Overall, findings reveal that current data is incomplete and of poor representativeness. Most LCAs are not performed on commercial production, but at pilot or experimental scale, why often only indicative drivers for greenhouse gas emissions may be identified. For microalgae, there is a wide diversity of production systems in different conditions across the globe. Based on the data at hand, energy use is a key hotspot across most studies for this production, driven by the requirements of different types of systems and species, and to location. For macroalgae production, despite poor representativeness of especially green and red macroalgae, key aspects for minimizing greenhouse gas emissions are associated with energy consumption and use of materials for farming such as ropes. No LCA exists on wild harvested macroalgae, representing the largest production volume in Europe (>95%); large-scale wild harvest may also be associated with risks to ecosystems unless suitable management is enforced. Significant data gaps also exist in food composition databases regarding nutrient and heavy metal content in algae (e.g., vitamins and omega-3 fatty acids). When available, nutrient content was found to be highly variable within and across species, but overall, the evaluation of nutritional quality indicated that algae may be a considerable source of minerals and vitamin B12. The contribution of fiber and protein is generally minimal in a 5 g dry weight portion of macroalgae; microalgae may have higher protein content, and also fat. However, excessive amounts of iodine and several heavy metals may be represented even in very small amounts of unprocessed macroalgae. In summary, the suggested potential of farmed algae as a sustainable food resource is overall strengthened by its generally low carbon footprint during production compared to other food raw materials. However, more input data are needed to fill data gaps regarding both environmental impacts and nutrient quality, and effects from different processing, as well as improved understanding of nutrient and contaminant bioavailability. Pending further research, careful considerations of risks and benefits associated with algae production and consumption should be applied.

Förlag
s. 54
Serie
RISE Rapport ; 2023:84
Nyckelord
algae, carbon footprint, environmental impact, nutrition, contaminants
Nationell ämneskategori
Miljövetenskap
Identifikatorer
urn:nbn:se:ri:diva-66707 (URN)978-91-89821-57-6 (ISBN)
Anmärkning

This report represents an output of the research project ‘The role of algae in sustainable food systems- a knowledge synthesis of the nutritional quality and environmental impact’, funded by the Swedish Research Council Formas (grant 2020-03113).

Tillgänglig från: 2023-09-11 Skapad: 2023-09-11 Senast uppdaterad: 2024-03-26Bibliografiskt granskad
Ziegler, F. & Hilborn, R. (2023). Fished or farmed: Life cycle impacts of salmon consumer decisions and opportunities for reducing impacts. Science of the Total Environment, 854, Article ID 158591.
Öppna denna publikation i ny flik eller fönster >>Fished or farmed: Life cycle impacts of salmon consumer decisions and opportunities for reducing impacts
2023 (Engelska)Ingår i: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 854, artikel-id 158591Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Salmon is a nutritious and popular food among consumers predominantly in wealthy countries around the world. Since the mid-1990s farmed salmon production has exceeded wild salmon harvest, and is now 80 % of total global salmon supply. The environmental impacts of farmed salmon are frequently discussed and consumers are faced with a multitude of choices even after deciding to have salmon for dinner: species, production method, origin, product form. We present life cycle impacts of fresh and frozen salmon products, originating in purse seine fisheries for pink salmon and gill net fisheries for sockeye salmon in Alaska, when sold on markets in Europe and the United States. Norwegian salmon products are then modelled to the same markets in fresh and frozen form, based on literature data. Impact categories included were greenhouse gas emissions, marine eutrophication, marine ecotoxicity and land use. A fish in, fish out ratio is also calculated and differences in content of nutrients and contaminants described. Frozen products from wild sockeye and pink salmon had the lowest emissions in both markets. For consumers in the U.S. and Europe, wild salmon products have 46–86 % and 12–71 % lower greenhouse gas emissions than farmed Norwegian salmon, respectively, depending on species and product form. Farmed salmon also had higher land use, marine ecotoxic and eutrophying emissions and fish in, fish out ratio. Important differences exist in nutritional and contaminant content between the three types of salmon production. Improvement options as well as an optimized supply chain are modelled showing greenhouse gas reduction opportunities of 40–50 % also for the best performing chains. Results can be used as a baseline for improved data collection and emission reductions. Recommendations for consumers, industry and policymakers who can facilitate and even drive development towards more sustainable salmon products are provided. © 2022 The Authors

Ort, förlag, år, upplaga, sidor
Elsevier B.V., 2023
Nyckelord
Aquaculture, Fisheries, Greenhouse gas emissions, LCA, Life Cycle Assessment, Wild, Commerce, Digital storage, Emission control, Eutrophication, Gas emissions, Greenhouse gases, Land use, Life cycle, Supply chains, Farmed salmon, Life cycle impacts, Pink salmon, Product forms, Sockeye salmon, Wild salmon, Fish
Nationell ämneskategori
Miljövetenskap
Identifikatorer
urn:nbn:se:ri:diva-60253 (URN)10.1016/j.scitotenv.2022.158591 (DOI)2-s2.0-85138091269 (Scopus ID)
Anmärkning

Funding details: Fetal Health Foundation, FHF; Funding details: Svenska Forskningsrådet Formas, 2016-00227; Funding details: Fiskeri - og havbruksnæringens forskningsfond, FHF; Funding text 1: The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: RH reports financial support was provided by Bristol Bay Regional Seafood Development Agency . FZ is employed by an institute that does research and contract work in her area of expertise commissioned by governmental and non-governmental organisations or by seafood companies. The institute has received funding for multiple private and publicly funded projects in the space of sustainable seafood production and consumption, including many projects related to farmed salmon. FZ was involved in research funded by the Norwegian Seafood Research Fund, FHF, in 2019, which led to the data for farmed salmon used in this study. FZ is also part of the sustainability advisory board of Nomad Foods. RH receives research funding from many groups that have interests in fisheries outcomes including environmental NGOs, foundations, governments and fishing industry groups.; Funding text 2: We are most grateful to the representatives of the fishing industry who spent time and effort on providing us with data for Alaskan salmon fishing and processing. The work of FZ was funded by the Swedish Research Council Formas (Grant No. 2016-00227 ), the work of RH was funded by the Bristol Bay Regional Seafood Development Agency and the Seafood Industry Research Fund .

Tillgänglig från: 2022-10-10 Skapad: 2022-10-10 Senast uppdaterad: 2023-05-17Bibliografiskt granskad
Langeland, M., Ziegler, F. & Wocken, Y. (2023). Greenhouse gas emissions of rainbow troutfed conventional and novel feeds from Balticregion, evaluated using Life Cycle Assessment.
Öppna denna publikation i ny flik eller fönster >>Greenhouse gas emissions of rainbow troutfed conventional and novel feeds from Balticregion, evaluated using Life Cycle Assessment
2023 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Aquaculture production set a new record in 2020, with over 120 million tonnes of production, whichcorresponds to about half of the global seafood consumption. However, Swedish aquacultureproduction is currently low, but slowly increasing. The global aquaculture sector is predicted tocontinue to grow but needs to reduce its environmental footprint. In intensive aquaculture in whichfeed is used, feed inputs often account for the largest share of environmental impacts, thus feeddevelopment is a priority to increase the sustainability of fed aquaculture.The purpose of this study is to evaluate the environmental sustainability implications of shiftingto more regional and circular feed inputs for rainbow trout, by, as a first step, estimating thegreenhouse gas emissions – or carbon footprint- of the novel feed and fish raised on it compared toconventional production. Fish were produced in net pens in Sweden and fed either a conventionalfeed (reference), or an experimental feed in which 60% of the protein content derives from novelingredients (insects, blue mussels, sea squirts and fava bean protein isolate) sourced from the Nordiccountries to replace land animal by-products (i.e. blood meal and poultry by product meal) and soyprotein concentrate.Results show that the novel feed reduces greenhouse gas emissions of one kg of rainbow troutby around 63 %. Fish fed the experimental feed maintained the same growth and economic feedconversion ratio (eFCR) as fish fed the control feed. The reduction is mainly due to the almost 70%lower emissions of the experimental feed; 1.6 kg CO2eq./kg feed compared to 5.4 kg CO2eq./kg feedof the conventional feed. Feeding fish insects reared on plant-based waste streams from the foodindustry, increases the circularity and reduces emissions. However, the modelling choice that somefeed inputs based on side streams with no economic value are free of environmental burden, has astrong influence on the results. Despite shorter transport distances no lower impact of transportscould be found for the experimental feed due to the utilisation of more climate intensive transportmeans/modes. Further, the novel feed ingredients used in the study come from pilot or test scaleproduction plants, with potential to further decrease emissions with optimised processing. Atpresent, the available volumes of these feed inputs are limited which prevents a rapid large-scaleshift of the aquaculture industry. Other sources of uncertainty include the fact that the FCR is basedon a four-month growth trial which might not reflect a complete production cycle. This studyindicates that there is a potential to reduce the carbon footprint of intensive aquaculture by usingalternative protein sources, an important step that shows that it is worthwhile to continue expandingthe analysis to cover also other environmental aspects to avoid shifting burdens between differenttypes of environmental impact.

Förlag
s. 32
Serie
Mistra Food Futures Report ; 3
Nyckelord
Rainbow trout, aquaculture, LCA, feed, greenhouse gas emissions, novel proteins
Nationell ämneskategori
Fisk- och akvakulturforskning
Identifikatorer
urn:nbn:se:ri:diva-68605 (URN)978-91-8046-822-0 (ISBN)978-91-8046-821-3 (ISBN)
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskning
Tillgänglig från: 2023-12-15 Skapad: 2023-12-15 Senast uppdaterad: 2024-03-25Bibliografiskt granskad
Axelsson, A. F., Ziegler, F. & Hornborg, S. (2023). Metod för beräkning av svensk sjömatskonsumtion.
Öppna denna publikation i ny flik eller fönster >>Metod för beräkning av svensk sjömatskonsumtion
2023 (Svenska)Rapport (Övrigt vetenskapligt)
Abstract [en]

Method for calculation of Swedish seafood consumption

Robust statistics on how much and which seafood is consumed in Sweden are important for calculations of intake of both desired and undesired substances through seafood, as well as for mapping and forecasting the environmental footprint generated by consumption. Based on three previous reviews summarizing production and trade statistics to estimate Swedish seafood consumption per species and production method (fishing/ aquaculture), a method has been developed for calculating seafood consumption. Previous reports have provided valuable insights, since the Swedish Board of Agriculture does no longer publish data on Swedish seafood consumption in the same way as for other foods. Focusing on the most recent review, which represents the current state of knowledge and the latest statistics, the purpose of this report is to describe in detail, step by step, the method used for calculating Swedish seafood consumption. The calculation is based on public statistics on the volume of imports, exports and production in aquaculture and fisheries, which when needed was complemented with information from other sources. The method description includes where data is found, how it is downloaded, processed, categorized and how the different datasets were later combined to provide an overall picture of Swedish seafood consumption. Finally, knowledge gaps and the need for supplementary data collection is described. The work on this report has revealed that there are still considerable deficiencies and data gaps in the public production and trade statistics. For instance, landings by foreign commercial fishing boats as well as landings of certain species in recreational fishing are not presented. Production data of certain species in aquaculture may also be lacking, due to confidentiality, and requires alternative strategies to be obtained. In addition, available statistics on herring and sprat are uncertain and difficult to interpret, which is why the calculation of these species requires special treatment. Due to its great importance in both production and consumption, the uncertainties surrounding these species represent an important source of error in the estimation of total consumption. Improvements in production and trade statistics of seafood are important for several reasons and it is important that a future method for public consumption statistics is harmonized with that used for other foods, to enable comparisons. Using alternative and varied ways to fill data gaps from year to year obstructs reliable calculations and comparisons – over time and with other product groups. To ensure a sustainable increase in seafood production and consumption, improved transparency through the whole value chain is of considerable importance – not the least to understand which seafood species that could increase in a sustainable way.

Förlag
s. 23
Serie
RISE Rapport ; 2023:4
Nationell ämneskategori
Livsmedelsvetenskap
Identifikatorer
urn:nbn:se:ri:diva-64283 (URN)978-91-89757-17-2 (ISBN)
Anmärkning

Arbetet med den här rapporten har utförts av RISE på uppdrag av Jordbruksverket.

Tillgänglig från: 2023-04-06 Skapad: 2023-04-06 Senast uppdaterad: 2024-03-01Bibliografiskt granskad
Cardinaals, R. P. M., Simon, W. J., Ziegler, F., Wiegertjes, G. F., van der Meer, J. & van Zanten, H. H. E. (2023). Nutrient yields from global capture fisheries could be sustainably doubled through improved utilization and management. Communications Earth & Environment, 4(1), Article ID 370.
Öppna denna publikation i ny flik eller fönster >>Nutrient yields from global capture fisheries could be sustainably doubled through improved utilization and management
Visa övriga...
2023 (Engelska)Ingår i: Communications Earth & Environment, E-ISSN 2662-4435, Vol. 4, nr 1, artikel-id 370Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The global food system is facing the challenge of producing sufficient nutrients to accommodate future demands within planetary boundaries, while reducing malnutrition. Although nutrient-rich seafood can play a prominent role in resolving this challenge, seafood from capture fisheries is currently partly wasted. Here we quantified the nutrient contribution from capture fisheries through a hypothetical scenario that assumed all captured seafood and byproducts from seafood processing would be used for human consumption. Our simulations show that available seafood per capita can be doubled without increasing the pressure on global fisheries when all reported, illegal, and discarded capture is used as food, complemented with processing byproducts. In such a scenario, seafood contributes greatly to daily nutrient requirements – e.g., omega-3 can be fully met. Although uncertainty should be considered, these results indicate that putting the whole fish on the table can increase nutrient availability from capture fisheries substantially and sustainably. 

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2023
Nyckelord
fishery management; food production; nutrient; seafood; sustainability
Nationell ämneskategori
Livsmedelsvetenskap
Identifikatorer
urn:nbn:se:ri:diva-67687 (URN)10.1038/s43247-023-01024-9 (DOI)2-s2.0-85174209767 (Scopus ID)
Tillgänglig från: 2023-11-03 Skapad: 2023-11-03 Senast uppdaterad: 2023-11-03Bibliografiskt granskad
Ziegler, F., Axelsson, A. F., Sanders, C. & Hornborg, S. (2023). Sverige och sjömaten: idag och i morgon. Kan vi samtidigt öka produktion, konsumtion och hållbarhet?. Swedish University of Agricultural Sciences
Öppna denna publikation i ny flik eller fönster >>Sverige och sjömaten: idag och i morgon. Kan vi samtidigt öka produktion, konsumtion och hållbarhet?
2023 (Svenska)Rapport (Övrigt vetenskapligt)
Alternativ titel[en]
Seafood in Sweden : today and tomorrow. Can we increase production, consumption and sustainability at the same time?
Abstract [sv]

Sjömat, beroende på art och produktionsmetod, har visat sig vara ett bra alternativ till framför allt rött kött ur både miljö- och hälsosynpunkt. Sverige har dock utvecklingsbehov vad gäller såväl konsumtion som produktion av sjömat – vi når idag inte upp till Livsmedelsverkets rekommendationom att äta 2–3 portioner per vecka, vi håller oss till få arter och importerar dessutom omkring 75% av den sjömat vi äter. Att undersöka utvecklingspotentialen för svensk sjömatssektor är med andra ord högst relevant, inte minst mot bakgrund av den svenska livsmedelsstrategin som bl a syftar tillökad inhemsk produktion och försörjningskapacitet. Det är också viktigt att utvecklingen sker inom de delar av sektorn som är mest hållbara. Detta innebär exempelvis att fiskets fångster inte kan öka,utan i stället bör användas mer effektivt än idag. Syftet med den här rapporten är att kartlägga miljöavtrycket av dagens produktion och konsumtion av sjömat och modellera framtidsscenarier för 2030 och 2045. Tanken är att ge en bild av hur det skulle kunna se ut, genom att kombinera pågående och önskvärda trender kring sjömat, snarare än att försöka ge en exakt bild av hur framtiden kommer att bli. Rapporten är främst tänkt att utgöra ett diskussionsunderlag för vad som behöver göras för att nå dit. Vi undersöker också om det finns förutsättningar att kunna tillgodose Sveriges befolkningmed sjömat enligt rekommendationerna, samtidigt som klimatavtrycket minskar. För de arter som dominerar dagens produktion respektive konsumtion identifierades de viktigaste produktionsteknikerna och bästa tillgängliga data för klimatavtrycket av dessa. För produktionen vägdes även potentiell övergödning samt påverkan på bestånd och bottenhabitat in och diskuterades semi-kvantitativt/kvalitativt. Framtidsscenarierna baserades sedan på fyra åtgärderför att öka produktionen och/eller minska klimatavtrycket: 1) ökat vattenbruk, 2) ökad användning av pelagisk fisk till livsmedel, 3) ökad användning av sidoströmmar från fiskberedning till livsmedelsamt 4) minskat klimatavtryck och bränsleåtgång inom fisket bl a genom mer hållbar förvaltning. För att modellera framtida konsumtion antogs att fördelningen mellan huvudtyper av sjömat, t ex vitfisk och laxfisk, var liknande, men att efterfrågan på de mest klimatsmarta alternativen inom varje grupp ökade. Analysen visar att det totala klimatavtrycket och övergödningspotentialen ökar när större volymer produceras, liksom klimatavtrycket per kilo med den sammansättning som är vald. Närsaltsutsläpp med potentiell övergödande effekt ökar både totalt och per kg p g a ökad produktion av kassodlad fisk. Vad gäller konsumtion innebär en växande inhemsk produktion i kombinationmed en förändrad sammansättning inom och mellan sjömatskategorier att vi kan nå upp till Livsmedelsverkets rekommendationer, samtidigt som sjömatskonsumtionens totala klimatavtryckminskar. Dessutom kan utveckling av teknik och foder leda till ytterligare förbättringar som vi idag inte kan förutse, men det kan också ske försämringar p g a klimatförändringarna. Det finns således teoretiska förutsättningar att öka både produktion och konsumtion till nivåer som ligger i linje med nationella behov och rekommendationer, och samtidigt minska klimatavtrycket per kg sjömat konsumerad. För att realisera detta krävs breda och målinriktade samarbeten mellan myndigheteroch näring, hållbara inköpsstrategier samt långsiktigt hållbar förvaltning av fisket. Det finns många fördelar med att öka den inhemska produktionen, men trots kortare transporter är svenskproducerad sjömat inte per definition mer hållbar än importerad – det viktigaste är hur den är producerad. Det finns även behov av att utveckla vad som kännetecknar mervärden kring svensk sjömat. Ur perspektivet hållbara dieter är det dessutom viktigt att se till helheten, dvs även vilka produkter den nya sjömaten ersätter.

Abstract [en]

Seafood, depending on species and production method, has generally proven to be a good alternative to especially red meat from both an environmental and health perspective. However, Sweden is lagging behind in terms of both consumption and production of seafood – we do not reach the Swedish Food Agency’s dietary advice of having 2-3 portions per week, we eat only few species and import around 75% of the seafood consumed. In other words, investigating the development potential for the Swedish seafood sector is highly relevant, not the least in light of the national food strategy, where one aim is to increase domestic food production. It is also important to allow for sustainable development of the sector, which for instance means that catches cannot increase but should be used more effectively. The purpose of this report is to map the environmental footprint of current seafood production and consumption and model future scenarios for 2030 and 2045. Rather than trying to reflect the definite future, the idea is to show what it could look like, by combining ongoing and desirable trends regarding seafood. The report is primarily intended as a basis for discussions of what needs to be done to reach the desired future situation. We also investigate if we, through increased production, will be able to supply Sweden with seafood in accordance with the national recommendations, while reducing the climate impact. For species dominating Swedish production and consumption today, the most important production techniques and best available data of greenhouse gas (GHG) emissions of these were identified. Eutrophication potential and impact on fish stocks and bottom habitats from production were also weighed in and discussed semi-quantitatively/qualitatively. The future scenarios were then based on possible measures to increase production and/or reduce the climate impact: 1) increased aquaculture, 2) increased use of pelagic fish for human consumption, 3) increased use of side streamsfrom fish processing for human consumption, and 4) reduced climate impact and fuel consumptionin fishing partly through more sustainable management. To model future consumption and imports, it was assumed that distribution between main types of seafood, e.g. whitefish and salmonids, remain similar, but that demand for the most climate-efficient alternatives within each group will increase.Total climate and eutrophication potential increases with larger production and so does climateimpact per kg seafood produced with the chosen composition. Nutrient emissions, that may causeeutrophication, increase both in total and per kg due to increasing netpen production of fish. In terms of consumption, it appears that a growing domestic production combined with changed composition within and between seafood categories, together with the growing domestic production, makes it possible to reach the Swedish Food Agency’s recommendations – while reducing the GHG emissions of consumption. In addition, development of feed and technology may lead to further improvements that we cannot foresee today, although climate change also can affect production. Opportunities do exist to increase both production and consumption to levels in line with nationalneeds and recommendations, while reducing GHG emissions per kg seafood consumed. To make this happen, broad and goal-oriented collaborations between authorities and industry, sustainable sourcing strategies as well as a long-term sustainable management of Swedish fisheries is required. Increasing domestic production comes with multiple benefits, but despite shorter transports, Swedish seafood is not by definition more sustainable than imported – the most important aspectalso for Swedish seafood is how it is produced. What characterizes added values of Swedish seafood also need to be developed, and a holistic perspective is essential, i.e. considering what products new seafood is replacing.

Ort, förlag, år, upplaga, sidor
Swedish University of Agricultural Sciences, 2023. s. 43
Serie
Mistra Food Futures ; 17
Nyckelord
seafood, Sweden, production, consumption, sjömat, Sverige, produktion, konsumtion
Nationell ämneskategori
Livsmedelsvetenskap
Identifikatorer
urn:nbn:se:ri:diva-68606 (URN)978-91-8046-874-9 (ISBN)978-91-8046-873-2 (ISBN)
Forskningsfinansiär
Mistra - Stiftelsen för miljöstrategisk forskning
Tillgänglig från: 2023-12-15 Skapad: 2023-12-15 Senast uppdaterad: 2024-03-01
van Hal, O., van Zanten, H. H. .., Ziegler, F., Schrama, J. W., Kuiper, K. & de Boer, I. J. .. (2023). The role of fisheries and fish farming in a circular food system in the European Union. Sustainable Production and Consumption, 43, 113-123
Öppna denna publikation i ny flik eller fönster >>The role of fisheries and fish farming in a circular food system in the European Union
Visa övriga...
2023 (Engelska)Ingår i: Sustainable Production and Consumption, ISSN 2352-5509, Vol. 43, s. 113-123Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Studies that demonstrated animals can contribute to resource efficient food supply, by upcycling low-opportunity-cost feed (LCF), into valuable animal-source food, focussed solely on livestock (ruminants, pigs and poultry). Aquatic animals, however, also make valuable contributions to food supply, especially as they are our main natural source of eicosapentaenoic (EPA) and docosahexaenoic (DHA) ω-3 fatty acids. Our aim, therefore, was to assess the contribution of capture fisheries and fish farming (salmon and tilapia) to human nutrient supply in EU-28 (before Brexit), when feeding no biomass from arable land or waterbodies but only LCF to livestock and farmed fish. To this aim, we deployed an optimisation model allocating available LCF in the EU under various scenarios, to that combination of fish and livestock that maximises human digestible protein supply, while meeting human requirements of vitamin B12 and EPA + DHA. We found that capture fisheries could fulfil maximally around 40 % of daily per capita EPA + DHA requirements in EU28. This contribution would already require rebuilding fish stocks and prioritising edible fish for human consumption. To meet our EPA + DHA requirements we, thus, need to additionally farm fatty fish (salmon). Our results show that, when feeding only LCF, these fatty fish depend on by-products from fisheries to meet their own EPA + DHA requirements and on livestock slaughter by-products to meet their high protein requirements. Feeding livestock by-products to farmed fish, however, is not common practice due to concerns about consumer acceptance. We also demonstrate that upcycling LCF into valuable human food requires a proper balance of different farmed fish and livestock systems, tailored to the available LCF and desired nutrient supply to the human population. Overall, our results provide insights into the role of aquatic animals across land and water to human nutrient supply and give a direction for strategic sustainability development of both capture fisheries and fish farming. 

Ort, förlag, år, upplaga, sidor
Elsevier B.V., 2023
Nyckelord
Farms; Fatty acids; Feeding; Fish; Food supply; Mammals; Nutrients; Nutrition; Proteins; Animal source foods; Feed-food competition; Fish farming; Food and nutrition security; Food leftover; Nutrient supply; Opportunity costs; Resource use; Resource use efficiency; Use efficiency; Fisheries
Nationell ämneskategori
Fisk- och akvakulturforskning
Identifikatorer
urn:nbn:se:ri:diva-67904 (URN)10.1016/j.spc.2023.10.017 (DOI)2-s2.0-85176233408 (Scopus ID)
Anmärkning

This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 633692 .

Tillgänglig från: 2023-11-27 Skapad: 2023-11-27 Senast uppdaterad: 2023-11-27Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-1995-2338

Sök vidare i DiVA

Visa alla publikationer