Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (9 of 9) Visa alla publikationer
Rogers, P., Silfwerbrand, J., Gram, A. & Selander, A. (2019). Bulk hydrophobic civil engineering concrete for nordic conditions – Freeze thaw action. In: Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures. Paper presented at fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, 27 May 2019 through 29 May 2019 (pp. 2044-2051). International Federation for Structural Concrete
Öppna denna publikation i ny flik eller fönster >>Bulk hydrophobic civil engineering concrete for nordic conditions – Freeze thaw action
2019 (Engelska)Ingår i: Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, International Federation for Structural Concrete , 2019, s. 2044-2051Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Concrete is a composite building material which long term function can be modified for example by changing the water to cement ratio (w/c) or by adding in other chemical admixtures to change the fresh and hardened properties of the concrete. The overall goal of this study is to reduce the water absorption capacity of the cement paste/microstructure by at least 85 %. This is achieved by using bulk hydrophobic agents in the mixing phase rather than post hardened surface application. Numerous commercial agents and triglycerides (vegetable oils) were tested and showed promising results at a dosage equal to 3% of cement weight. This though affected compressive strengths negatively. As these concretes will be exposed to Nordic winter conditions, the concrete should perform well under repeated salt water freezing and thawing. This continued study will show how a selection of these bulk hydrophobic concretes performed during this part of the study. The concrete has a w/c = 0.4 with a cement content (CEM I) of 430 kg/m3.

Ort, förlag, år, upplaga, sidor
International Federation for Structural Concrete, 2019
Nyckelord
Air pores, Bulk hydrophobic concrete, Freeze thaw action, Silanes, Thin section analysis, Triglycerides, Vegetable oils, Cements, Compressive strength, Concrete additives, Freezing, Hardening, Hydrophobicity, Thawing, Water absorption, Composite building materials, Freeze thaw actions, Fresh and hardened properties, Thin section, Water absorption capacity, Water-to-cement ratios, Concretes
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:ri:diva-38967 (URN)2-s2.0-85066107127 (Scopus ID)9782940643004 (ISBN)
Konferens
fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, 27 May 2019 through 29 May 2019
Anmärkning

 Funding details: Bundesamt für Berufsbildung und Technologie; Funding details: Stiftelsen Bergteknisk Forskning; Funding text 1: The authors would like to thank BBT (Swedish Transport Agency) and BeFo (Rock Engineering Research Foundation) for their continued financial support.

Tillgänglig från: 2019-06-14 Skapad: 2019-06-14 Senast uppdaterad: 2019-08-13Bibliografiskt granskad
Roussel, N., Gram, A., Cremonesi, M., Ferrara, L., Krenzer, K., Mechtcherine, V., . . . Vasilic, K. (2016). Numerical simulations of concrete flow: A benchmark comparison. Cement and Concrete Research, 79, 265-271
Öppna denna publikation i ny flik eller fönster >>Numerical simulations of concrete flow: A benchmark comparison
Visa övriga...
2016 (Engelska)Ingår i: Cement and Concrete Research, ISSN 0008-8846, E-ISSN 1873-3948, Vol. 79, s. 265-271Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we compare numerical predictions of the concrete sample final shape for these two benchmark flows obtained by various research teams around the world using various numerical techniques. Our results show that all numerical techniques compared here give very similar results suggesting that numerical simulations of concrete filling ability when neglecting any potential components segregation have reached a technology readiness level bringing them closer to industrial practice.

Ort, förlag, år, upplaga, sidor
Elsevier, 2016
Nyckelord
casting, fresh concrete, modeling, rheology, workability
Nationell ämneskategori
Samhällsbyggnadsteknik Strömningsmekanik
Identifikatorer
urn:nbn:se:ri:diva-357 (URN)10.1016/j.cemconres.2015.09.022 (DOI)2-s2.0-84948461571 (Scopus ID)
Tillgänglig från: 2016-06-20 Skapad: 2016-06-20 Senast uppdaterad: 2025-02-05Bibliografiskt granskad
Gram, A., Silfwerbrand, J. & Lagerblad, B. (2016). Particle motion in fluid: Analytical and numerical study. Applied Rheology, 26(2)
Öppna denna publikation i ny flik eller fönster >>Particle motion in fluid: Analytical and numerical study
2016 (Engelska)Ingår i: Applied Rheology, ISSN 1430-6395, E-ISSN 1617-8106, Vol. 26, nr 2Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Particle motion in fluid is discussed for one-particle systems as well as for dense suspensions, such as cementitious materials. The difference in large particle motion between larger particles and behaviour of fines (<125 μm) is explained, motion of one particle is shown by numerical simulation. It is concluded and highlighted that it is the particular motion of the fines that to a large extent contribute to the rheological properties of a suspension. It is also shown why larger ellipsoidal particles do not necessarily contribute to the increase of viscosity.

Ort, förlag, år, upplaga, sidor
Kerschensteiner Verlag GmbH, 2016
Nyckelord
Bingham model, cementitious material, suspensional flow
Nationell ämneskategori
Samhällsbyggnadsteknik Strömningsmekanik
Identifikatorer
urn:nbn:se:ri:diva-385 (URN)10.3933/APPLRHEOL-26-23326 (DOI)2-s2.0-84963591618 (Scopus ID)
Tillgänglig från: 2016-06-20 Skapad: 2016-06-20 Senast uppdaterad: 2025-02-05Bibliografiskt granskad
Kraft, L., Rogers, P., Eriksson Brandels, A., Gram, A., Trädgårdh, J. & Wallqvist, V. (2015). Experimentalrubber chip concrete mixes for shock absorbent bike lane pavements.. In: : . Paper presented at 3rd International Conference on Best Practices for Concrete Pavements, 28 - 30 October. 2015. Bonito, Brazil: IBRACON and USP..
Öppna denna publikation i ny flik eller fönster >>Experimentalrubber chip concrete mixes for shock absorbent bike lane pavements.
Visa övriga...
2015 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In Sweden the amount of cyclists being injured in traffic has increased in recent years. Over 23,000 peopleper annum visit an acute care hospital after being injured whilst cycling. Most bicycle accidents are single“vehicle” accidents (82 %) and the most common collision is with another cyclist. Due to increased healthcare costs and the fact that more city dwelling people choose to cycle instead of going by car - due both tomonetary, environmental and personal health reasons - one is devoted to find solutions to make cyclingsafer. Besides efforts to increase helmet usage among cyclists and safer bike lane design separate from cartraffic, another way to reduce injuries may be achieved by modifying the bike lanes’ properties. This wouldresult in safer cycling and not only reducing non-cranial injuries, but also limit the severity of head injuries forcyclists not wearing a helmet. Thus, the pavement and bicycle lane material must be an efficient absorbentof impact energy. The work here presents efforts on modifying a concrete pavement by replacing coarseaggregates and sand with rubber chips and rubber crumbs to increase the shock absorbent capacity.Altogether, eighteen different mixtures with varying proportions of rubber, cement and sand were preparedand evaluated regarding elastic modulus and compressive strength. A fly-ash cement, microsilica and latexsolution were used in the concrete mixes. From the results obtained the mix with the best impact absorbingproperties, with a low E-modulus and sufficient compressive strength, was chosen for further evaluation.

Serie
IBRACON, ISSN 2175-8182
Nyckelord
Rubber chips, rubber crumbs, rubber modified concrete, bike lane
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:ri:diva-39891 (URN)
Konferens
3rd International Conference on Best Practices for Concrete Pavements, 28 - 30 October. 2015. Bonito, Brazil: IBRACON and USP.
Tillgänglig från: 2019-09-06 Skapad: 2019-09-06 Senast uppdaterad: 2023-06-08Bibliografiskt granskad
Gram, A., Silfwerbrand, J. & Lagerblad, B. (2014). Obtaining rheological parameters from flow test: analytical, computational and lab test approach (ed.). Cement and Concrete Research, 63, 29-34
Öppna denna publikation i ny flik eller fönster >>Obtaining rheological parameters from flow test: analytical, computational and lab test approach
2014 (Engelska)Ingår i: Cement and Concrete Research, ISSN 0008-8846, E-ISSN 1873-3948, Vol. 63, s. 29-34Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In the mix design process of cementitious suspensions, an adequate rheology of the cement paste is crucial. A novel rheological field test device for cementitious fluids is presented here and investigated theoretically, by computer simulation and by lab tests. A simple flow stoppage test with a timed spread passage point provides accurate rheological parameters according to the Bingham material model. Values for yield stress and plastic viscosity are obtained for a test specimen of no more than 19.75 · 10- 6 m3 of fluid. This volume is equivalent to 19.75 g of water at room temperature. Such a small volume allows reliable tests even for small amounts of fillers. Promising results show that both yield stress and plastic viscosity can be determined by this simple test. This novel rheological test method also enables the correlation of different rheological equipment used by different laboratories.

Nyckelord
Cement paste, Modeling (E), Mortar (E), Rheology (A), Simulation, Workability Bingham material model (A)
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:ri:diva-2696 (URN)10.1016/j.cemconres.2014.03.012 (DOI)2-s2.0-84900990005 (Scopus ID)4690 (Lokalt ID)4690 (Arkivnummer)4690 (OAI)
Tillgänglig från: 2016-09-07 Skapad: 2016-09-07 Senast uppdaterad: 2020-12-01Bibliografiskt granskad
Mechtcherine, V., Gram, A., Krenzer, K., Schwabe, J. H., Shyshko, S. & Roussel, N. (2014). Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications (ed.). Materials and Structures, 47(4), 615-630
Öppna denna publikation i ny flik eller fönster >>Simulation of fresh concrete flow using Discrete Element Method (DEM): theory and applications
Visa övriga...
2014 (Engelska)Ingår i: Materials and Structures, ISSN 1359-5997, E-ISSN 1871-6873, Vol. 47, nr 4, s. 615-630Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article provides an overview of the development and the contemporary state of research in the field of simulating fresh concrete flow using the Discrete Element Method (DEM). First, this work originating from TC 222-SCF simulation of fresh concrete flow, covers the mathematical methodology, the identification of the model parameters and the link between the rheological properties of fresh concrete and the parameters of DEM-based models. Various examples of the estimation of model parameters and calibration of the model were demonstrated, followed by verifications by comparing the numerical results and the corresponding predictions by analytical formula and laboratory experiments. Furthermore, software used in concrete engineering and existing industrial applications of the developed particle models were described, showing the potential of DEM.

Nyckelord
Distinct Element Method, Fresh concrete, Numerical simulation, Rheology
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:ri:diva-2711 (URN)10.1617/s11527-013-0084-7 (DOI)2-s2.0-84895930606 (Scopus ID)4030 (Lokalt ID)4030 (Arkivnummer)4030 (OAI)
Tillgänglig från: 2016-09-07 Skapad: 2016-09-07 Senast uppdaterad: 2020-12-01Bibliografiskt granskad
Gram, A. & Lagerblad, B. (2013). Obtaining rheological parameters from slump flow test for self-compacting concrete. In: Sustainable Construction Materials and Technologies: . Paper presented at 3rd International Conference on Sustainable Construction Materials and Technologies, SCMT 2013, 18 August 2013 through 21 August 2013. International Committee of the SCMT conferences, Article ID e244.
Öppna denna publikation i ny flik eller fönster >>Obtaining rheological parameters from slump flow test for self-compacting concrete
2013 (Engelska)Ingår i: Sustainable Construction Materials and Technologies, International Committee of the SCMT conferences , 2013, artikel-id e244Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Rheological computer simulations of the Abrams cone are introduced in this paper. A Computational Fluid Dynamics software called OpenFOAM (https://www.openfd.o.uk) was used for the calculations. An easy-to-use model for obtaining yield stress and plastic viscosity of concrete on e.g. the building site is developed. Promising results show that both yield stress as well as plastic viscosity can be determined by this simple test.

Ort, förlag, år, upplaga, sidor
International Committee of the SCMT conferences, 2013
Nyckelord
Bingham material model, Numerical simulation, Self-compacting concrete, Slump flow, Computational fluid dynamics, Computer simulation, Concrete testing, Sustainable development, Viscosity, Yield stress, Abrams cones, Building sites, Computational Fluid Dynamics software, Material modeling, Plastic viscosity, Rheological parameter, Slump flow test, Self compacting concrete
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:ri:diva-50259 (URN)2-s2.0-84973864580 (Scopus ID)
Konferens
3rd International Conference on Sustainable Construction Materials and Technologies, SCMT 2013, 18 August 2013 through 21 August 2013
Tillgänglig från: 2020-11-03 Skapad: 2020-11-03 Senast uppdaterad: 2020-12-01Bibliografiskt granskad
Gram, A. & Silfwerbrand, J. (2010). Applications for numerical simulation of self-compacting concrete (ed.). Nordic Concrete Research, 42(2), 143-154
Öppna denna publikation i ny flik eller fönster >>Applications for numerical simulation of self-compacting concrete
2010 (Engelska)Ingår i: Nordic Concrete Research, ISSN 0800-6377, Vol. 42, nr 2, s. 143-154Artikel i tidskrift (Övrigt vetenskapligt) Published
Nyckelord
numerical simulation, analytical channel flow solution, SCC, casting, Rheo-Box
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:ri:diva-2673 (URN)5023 (Lokalt ID)5023 (Arkivnummer)5023 (OAI)
Tillgänglig från: 2016-09-07 Skapad: 2016-09-07 Senast uppdaterad: 2020-12-01Bibliografiskt granskad
Gram, A. (2009). SKB utvecklas inom teori och praktik (ed.). Betong (5), 43-45
Öppna denna publikation i ny flik eller fönster >>SKB utvecklas inom teori och praktik
2009 (Svenska)Ingår i: Betong, ISSN 1101-9190, nr 5, s. 43-45Artikel i tidskrift (Övrigt vetenskapligt) Published
Nyckelord
självkompakterande betong
Nationell ämneskategori
Annan materialteknik
Identifikatorer
urn:nbn:se:ri:diva-2555 (URN)4912 (Lokalt ID)4912 (Arkivnummer)4912 (OAI)
Tillgänglig från: 2016-09-07 Skapad: 2016-09-07 Senast uppdaterad: 2020-12-01Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-5901-1586

Sök vidare i DiVA

Visa alla publikationer