Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Agues Paszkowsky, NuriaORCID iD iconorcid.org/0000-0002-7763-2490
Publikationer (2 of 2) Visa alla publikationer
Pirinen, A., Abid, N., Agues Paszkowsky, N., Ohlson Timoudas, T., Scheirer, R., Ceccobello, C., . . . Persson, A. (2024). Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI. Remote Sensing, 16(4), Article ID 694.
Öppna denna publikation i ny flik eller fönster >>Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI
Visa övriga...
2024 (Engelska)Ingår i: Remote Sensing, E-ISSN 2072-4292, Vol. 16, nr 4, artikel-id 694Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cloud formations often obscure optical satellite-based monitoring of the Earth’s surface, thus limiting Earth observation (EO) activities such as land cover mapping, ocean color analysis, and cropland monitoring. The integration of machine learning (ML) methods within the remote sensing domain has significantly improved performance for a wide range of EO tasks, including cloud detection and filtering, but there is still much room for improvement. A key bottleneck is that ML methods typically depend on large amounts of annotated data for training, which are often difficult to come by in EO contexts. This is especially true when it comes to cloud optical thickness (COT) estimation. A reliable estimation of COT enables more fine-grained and application-dependent control compared to using pre-specified cloud categories, as is common practice. To alleviate the COT data scarcity problem, in this work, we propose a novel synthetic dataset for COT estimation, which we subsequently leverage for obtaining reliable and versatile cloud masks on real data. In our dataset, top-of-atmosphere radiances have been simulated for 12 of the spectral bands of the Multispectral Imagery (MSI) sensor onboard Sentinel-2 platforms. These data points have been simulated under consideration of different cloud types, COTs, and ground surface and atmospheric profiles. Extensive experimentation of training several ML models to predict COT from the measured reflectivity of the spectral bands demonstrates the usefulness of our proposed dataset. In particular, by thresholding COT estimates from our ML models, we show on two satellite image datasets (one that is publicly available, and one which we have collected and annotated) that reliable cloud masks can be obtained. The synthetic data, the newly collected real dataset, code and models have been made publicly available. 

Ort, förlag, år, upplaga, sidor
Multidisciplinary Digital Publishing Institute (MDPI), 2024
Nyckelord
Mapping; Optical properties; Optical remote sensing; Cloud detection; Cloud masks; Cloud optical thickness; Dataset; Earth observations; Machine learning methods; Machine-learning; Multispectral imagery; Synthetic datasets; Thickness estimation; Machine learning
Nationell ämneskategori
Naturresursteknik
Identifikatorer
urn:nbn:se:ri:diva-72841 (URN)10.3390/rs16040694 (DOI)2-s2.0-85185890836 (Scopus ID)
Forskningsfinansiär
Vinnova, 2023-02787Vinnova, 2021-03643
Anmärkning

This research was funded by VINNOVA grant number 2021-03643. The APC was funded by VINNOVA grant number 2023-02787

Tillgänglig från: 2024-04-29 Skapad: 2024-04-29 Senast uppdaterad: 2024-06-27Bibliografiskt granskad
Pirinen, A., Abid, N., Agues Paszkowsky, N., Ohlson Timoudas, T., Scheirer, R., Ceccobello, C., . . . Persson, A. (2023). Creating and Benchmarking a Synthetic Dataset for Machine Learning-Based Cloud Optical Thickness Estimation. In: : . Paper presented at EUMETSAT Meteorological Satellite Conference, 2023..
Öppna denna publikation i ny flik eller fönster >>Creating and Benchmarking a Synthetic Dataset for Machine Learning-Based Cloud Optical Thickness Estimation
Visa övriga...
2023 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Övrigt vetenskapligt)
Nationell ämneskategori
Maskinteknik
Identifikatorer
urn:nbn:se:ri:diva-68615 (URN)
Konferens
EUMETSAT Meteorological Satellite Conference, 2023.
Tillgänglig från: 2023-12-18 Skapad: 2023-12-18 Senast uppdaterad: 2024-06-27Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-7763-2490

Sök vidare i DiVA

Visa alla publikationer