Endre søk
Link to record
Permanent link

Direct link
BETA
Publikasjoner (10 av 206) Visa alla publikasjoner
Gehandler, J. & Lönnermark, A. (2019). CNG vehicle containers exposed to local fires.
Åpne denne publikasjonen i ny fane eller vindu >>CNG vehicle containers exposed to local fires
2019 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

Fuels with a high energy density have contributed to the development of modern communities. On the other hand, fuels contain energy that, during some conditions, can result in incidents, not least within transportation. CNG vehicles are designed according to safety standards of UNECE, including events such as fire. In case of a fire a thermally activated Pressure Relief Device (TPRD) should empty the container before a pressure vessel explosion potentially can occur. CNG tanks are according to UNECE regulation 110 tested against a 1.65 m long pan fire. However, local fires are not included in these tests. This report presents fire tests of CNG containers performed both with a UNECE compatible fire source and with a local fire source. Any pressure vessel explosion and jet flames were characterized for two different types of CNG containers, namely steel and composite. In five out of six tests the safety of the CNG containers prevailed also in the event of a local (0.24 m by 0.24 m) pan fire, meaning that no pressure vessel explosion occurred. In real vehicle fires, where the fire extends from its local characteristics to a more developed fire that expose the CNG containers to a larger extent, these tests support that TPRDs most likely will activate. The experience from running these test series call for that the fire source should be more accurately defined with regards to fuel and dimensions and a local fire should be included in the UNECE Regulation 110.

Publisher
s. 67
Serie
RISE Rapport ; 2019:120
Emneord
Fire tests, CNG, containers, vehicle, pressure vessel explosion, jet fire, Fordonsgastank, biogas, metangas, smältsäkring, tryckkärlsexplosion, jetbrand
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-42143 (URN)978-91-89049-73-4 (ISBN)
Merknad

Finansierat av RISE Tunnel Underground Safety Center (TUSC).  This is an updated version of RISE Rapport 2019:120. The revised version (2019:120_rev1) includes clarifications and some editorial corrections. The data and analysis are the same as in the first publication

Tilgjengelig fra: 2019-12-16 Laget: 2019-12-16 Sist oppdatert: 2020-01-15bibliografisk kontrollert
Huang, C., De Grahl, J., Nessvi, K., Lönnermark, A. & Persson, H. (2019). Explosion characteristics of biomass dust: comparisonbetween experimental test results and literature data. In: : . Paper presented at Ninth International Seminar on Fire and Explosion Hazards (pp. 366-375).
Åpne denne publikasjonen i ny fane eller vindu >>Explosion characteristics of biomass dust: comparisonbetween experimental test results and literature data
Vise andre…
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The design of explosion mitigation strategies e.g. vent design is mainly based on dust explosioncharacteristics such as the maximum explosion pressure XÇïÓ and the deflagration index n! of dustcloud, which are defined in various standards.The wood dust explosion characteristics can be directly obtained by performing standard tests, and testresults are also available in the literature. However, the parameters for one type of dust may varysubstantially in the literature. For example, the n! value for one wood dust is 11.4 times higher thananother wood dust in Gestis-Dust-Ex database. The reason for such large variation in explosionparameters is due to factors such as material properties, particle size distribution, particle shape, moisturecontent, turbulence level during tests and so on.The objectives of this paper are (i) to carry out dust explosion tests for XÇïÓ and n! for two wood dustswith well-described material parameters such as particle size distribution and moisture content accordingto European standards, (ii) to perform statistical analysis of wood dust explosion characteristics includingXÇïÓ and n! in the literature, (iii) to identify the effects of dust material parameters such as particle sizeand moisture contents on XÇïÓ and n! and (iv) to highlight the variation in XÇïÓ and n! and theimportance of obtaining knowledge about these properties of an individual dust, e.g. via dust explosiontests.

Emneord
biomass, wood dust, explosion, explosion overpressure, deflagration index
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-38809 (URN)10.18720/spbpu/2/k19-69 (DOI)9785742264965 (ISBN)
Konferanse
Ninth International Seminar on Fire and Explosion Hazards
Tilgjengelig fra: 2019-05-15 Laget: 2019-05-15 Sist oppdatert: 2019-05-17
Lönnermark, A., Persson, H., Hedenstedt, A., Jones, F., Davidsson, K., Johansson, I. & Boström, S. (2019). Rekommendation för proaktivt brandskyddsarbete. Malmö: Avfall sverige
Åpne denne publikasjonen i ny fane eller vindu >>Rekommendation för proaktivt brandskyddsarbete
Vise andre…
2019 (svensk)Rapport (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Malmö: Avfall sverige, 2019. s. 40
Serie
Avfall Sverige, ISSN 1103-4092 ; Rapport 2019:16
Emneord
Rekommendationer; avfall; lagring; rutiner; avfallsanläggningar; brandsäkerhet; släckvatten
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-39950 (URN)
Tilgjengelig fra: 2019-09-20 Laget: 2019-09-20 Sist oppdatert: 2019-10-14bibliografisk kontrollert
Yao, Y., Li, Y. Z., Lönnermark, A., Ingason, H. & Cheng, X. (2019). Study of tunnel fires during construction using a model scale tunnel. Tunnelling and Underground Space Technology, 89, 50-67
Åpne denne publikasjonen i ny fane eller vindu >>Study of tunnel fires during construction using a model scale tunnel
Vise andre…
2019 (engelsk)Inngår i: Tunnelling and Underground Space Technology, ISSN 0886-7798, E-ISSN 1878-4364, Vol. 89, s. 50-67Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The paper presents a study on the characteristics of tunnel fires during construction. A model-scale tunnel was built and fire tests were conducted. The tunnel consists of an inclined access tunnel and a horizontal main tunnel. The main tunnel has two dead ends (excavation faces) and the only opening is from one side of the access tunnel. Propane gas burner and the fibre board soaked with the heptane were used as fuels. The flame characteristics, O 2 and CO volume fraction and gas temperature were measured and recorded. Two typical characteristics of self-extinguishment and smoke spread were found in the tunnel fires during construction. Results indicate that when a fire occurs in the horizontal main tunnel, the critical equivalence ratio for the occurrence of self-extinguishment is within 0.28–1.38 for the propane gas burner and 1.11–3.6 for the fibre board soaked with heptane. The difference is related to the burning behavior of the different fuels used. The fire location in the horizontal tunnel also has a significant influence on the fire development. A well-ventilated fire at the center of the horizontal tunnel becomes under-ventilated due to vitiation when it is located at the closed end of the horizontal tunnel. Besides, when a fire occurs at the closed end of the horizontal main tunnel, the stratification of smoke is destroyed after hitting the closed end, and then the smoke seems to spread over the entire cross section of the tunnel. The smoke spread velocity is found to be proportional to the ventilation rate. However, when a fire occurs at the closed end of the inclined access tunnel (lower end), the fire does not self-extinguish, even when the ventilation rate is 0 m 3 /s. The corresponding smoke spread velocity is higher than that in the horizontal main tunnel. The outcomes of this study provide new experimental information that contributes to improve the understanding of characteristics of tunnel fires during construction and can help firefighters to make better decisions during the rescue processes.

sted, utgiver, år, opplag, sider
Elsevier Ltd, 2019
Emneord
Equivalence ratio, Self-extinguishment, Smoke spread, Tunnel during construction, Tunnel fire, Under-ventilated, Fires, Gas burners, Heptane, Open access, Propane, Smoke, Ventilation, Equivalence ratios, Smoke spreads, Tunnel fires, Tunnels
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-38351 (URN)10.1016/j.tust.2019.03.017 (DOI)2-s2.0-85063487886 (Scopus ID)
Merknad

Funding details: China Scholarship Council; Funding details: Myndigheten för Samhällsskydd och Beredskap; Funding details: RISE; Funding text 1: This work was financially supported by the Swedish Civil Contingencies Agency (MSB) and the Tunnel and Underground Safety Center (TUSC) which are gratefully acknowledged. Thanks to the advisory group consisting of numerous representatives from industry and authorities for valuable comments and support. Thanks also to Jonatan Gehandler for the support and our technicians for technical assistance in carrying out the tests. Besides, the authors would also like to acknowledge China Scholarship Council for providing Yongzheng Yao with the opportunity to study at Research Institutes of Sweden (RISE).

Tilgjengelig fra: 2019-05-07 Laget: 2019-05-07 Sist oppdatert: 2019-05-07bibliografisk kontrollert
Lönnermark, A. (2018). Brandsäker energilagring - Sammanställning av risker och forskningsbehov.
Åpne denne publikasjonen i ny fane eller vindu >>Brandsäker energilagring - Sammanställning av risker och forskningsbehov
2018 (svensk)Rapport (Annet vitenskapelig)
Alternativ tittel[en]
Fire safety of energy storage systems - Summary of risks and research needs
Abstract [en]

There is a large interest in the possibilities in storing produced energy that is not needed at that particular moment or to store energy when the cost for production of electricity is low. For this reason, different types of energy storage systems are used. With a fast development of new technologies and new forms of application for energy storage systems, it is important to also study the existing and potential risks with these types of systems.

This prestudy describes the field, its risks and needs for research. It focuses on risks associated with fire, including explosions and when relevant the production of toxic gases. Although the main focus of the prestudy is different types of energy storage systems, the report contains information also on risks associated with storage of solid biofuels and waste. This means that the report contains information on risks and needs for research for batteries, hydrogen, biogas, liquified gases, biofuels and waste.

Publisher
s. 42
Serie
RISE Rapport ; 2018:42
Emneord
energy storage system, fuel, energy carrier, fire safety, biofuel, waste
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-36322 (URN)978-91-88695-81-9 (ISBN)
Forskningsfinansiär
Brandforsk, 701-171
Merknad

Detta arbete har utförts inom förstudien Brandsäker energilagring.

Tilgjengelig fra: 2018-11-15 Laget: 2018-11-15 Sist oppdatert: 2018-11-15bibliografisk kontrollert
Lönnermark, A., Persson, H., Trella, F., Blomqvist, P., Boström, S. & Bergérus Rensvik, Å. (2018). Brandsäkerhet vid lagring av avfallsbränslen. Malmö
Åpne denne publikasjonen i ny fane eller vindu >>Brandsäkerhet vid lagring av avfallsbränslen
Vise andre…
2018 (svensk)Rapport (Annet vitenskapelig)
Abstract [sv]

Syftet med detta projekt har varit att ge ökad kunskap kring olika förekommande brandrisker och råd om hur dessa kan reduceras med olika åtgärder, primärt baserat på praktiska erfarenheter från genomfört säkerhetsarbete samt uppkomna bränder ute i olika anläggningar. Målet är att de samlade kunskaperna och erfarenheterna kan komma till nytta för hela branschen, övriga berörda intressenter och myndigheter och på sikt ligga till grund för t.ex. framtida branschrekommendationer.

Projektet kan delas in metodmässigt i; statistik, workshoppar samt analys av anläggningsspecifik information.

Analysen av insatsstatistik från Myndigheten för samhällsskydd och beredskap (MSB) pekar på att det inträffar i storleksordningen 60–70 bränder årligen i avfallsanläggningar och att brandorsaken i de flesta fall är självantändning eller okänd anledning. Tittar man på "brand ej i byggnad" med relevanta bränder för avfallsanläggningar så ser man en svagt ökande trend i antal bränder 2012–2015. 

De vanligaste materialfraktionerna som enligt statistik från MSB är kopplade till bränder i avfallsanläggningar är sopor, kompost, fluff, papper, trädgårdsavfall, däckgranulat, annat, skrot, återvinningscontainrar. Även en del av flisbränderna kan vara relaterade till RT-trä.

Från avfallsindustrins sida ansågs bark, returträ, flisat material och GROT (grenar och toppar) kunna ge problem med självuppvärmning. Även krossning av avfall angavs som ett generellt problem av flera deltagare.

Många incidenter och bränder anses bero på felsorterat eller feldeklarerat avfall och kontrollen av inkommande gods är därför väldigt viktig. Det är också viktigt att kommunicera uppströms i leveranskedjan för att öka chanserna att komma tillrätta med problemen. Många deltagare identifierade batterier (speciellt litiumbatterier) som ett växande problem.

Hanteringen av förorenat släckvatten varierar mycket. Man påpekar att samma krav över hela landet vore bra. Man önskar tydligare riktlinjer för släckvattenanalyser, kunskap om vad vattnet kan innehålla och information om reningsmetoder för släckvatten.

Det påpekas att det finns många standarder och normer att förhålla sig till så det vore därför bra att ha en lägsta nivå av krav som bestäms i samarbete med branschen som man kan förhålla sig till och någon form av vägledning från myndigheterna för göra hanteringen mer lik över riket.

Diskussionerna under workshopparna och tillsammans med projektets referensgrupp har lett fram till 33 rekommendationer uppdelade på olika områden. För varje rekommendation ges i rapporten ytterligare förklaringar. Dessa rekommendationer kan ligga till grund för framtida riktlinjer.

sted, utgiver, år, opplag, sider
Malmö: , 2018. s. 89
Serie
Avfall Sverige, ISSN 1103-4092 ; 2018:09
Emneord
avfall; lagring; brandsäkerhet; släckvatten; rekommendationer;
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-39949 (URN)
Tilgjengelig fra: 2019-09-19 Laget: 2019-09-19 Sist oppdatert: 2019-09-19bibliografisk kontrollert
Sedlmayer, I., Arshadi, M., Haslinger, W., Hofbauer, H., Larsson, I., Lönnermark, A., . . . Bauer-Emhofer, W. (2018). Determination of off-gassing and self-heating potential of wood pellets – Method comparison and correlation analysis. Fuel, 234, 894-903
Åpne denne publikasjonen i ny fane eller vindu >>Determination of off-gassing and self-heating potential of wood pellets – Method comparison and correlation analysis
Vise andre…
2018 (engelsk)Inngår i: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 234, s. 894-903Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Several methods for identifying the phenomena of self-heating and off-gassing during production, transportation and storage of wood pellets have been developed in recent years. Research focused on the exploration of the underlying mechanisms, influencing factors or the quantification of self-heating or off-gassing tendencies. The present study aims at identifying a clear correlation between self-heating and off-gassing. Thus, different methods for determining self-heating and off-gassing potentials of wood pellets are compared. Therefore, eleven wood pellet batches from the European market were analyzed. For this investigation, three methods for the determination of self-heating, like isothermal calorimetry, oxi-press and thermogravimetric analysis, and four methods for off-gassing, like volatile organic compound (VOC) emissions measurements, gas phase analysis of stored pellets in a closed container by offline and by glass flask method and determination of fatty and resin acids content, were performed. Results were ranked according to the self-heating and off-gassing tendency providing a common overview of the analyzed pellets batches. Relations between different methods were investigated by Spearman's correlation coefficient. Evaluation of the results revealed an equal suitability of offline and glass flask methods to predict off-gassing tendency and indicated a very significant correlation with isothermal calorimetry for the identification of self-heating tendency. The thermogravimetric analysis as well as the fatty and resin acids determination proved to be insufficient for the exclusive assessment of self-heating and off-gassing tendency, respectively.

Emneord
Carbon monoxide, Emission, Laboratory methods, Self-ignition, Storage
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-34788 (URN)10.1016/j.fuel.2018.07.117 (DOI)2-s2.0-85050894355 (Scopus ID)
Merknad

Funding details: 20569-4, Energimyndigheten; Funding details: 42002-1, Energimyndigheten; Funding details: 287026, EC, European Commission

Tilgjengelig fra: 2018-08-15 Laget: 2018-08-15 Sist oppdatert: 2019-02-05bibliografisk kontrollert
Lönnermark, A. & Ingason, H. (Eds.). (2018). Proceedings from the Eighth International Symposium on Tunnel Safety and Security, Borås, Sweden, March 14-16, 2018. Paper presented at Eighth International Symposium on Tunnel Safety and Security (ISTSS 2018). Borås, Sweden: RISE Research Institutes of sweden
Åpne denne publikasjonen i ny fane eller vindu >>Proceedings from the Eighth International Symposium on Tunnel Safety and Security, Borås, Sweden, March 14-16, 2018
2018 (engelsk)Konferanseproceedings (Annet vitenskapelig)
Abstract [en]

This report includes the Proceedings of the 8th International Symposium on Tunnel Safety and Security (ISTSS) held in Borås, Sweden, 14-16th of March, 2018. The Proceedings include 41 papers given by session speakers and 16 extended abstracts presenting posters exhibited at the Symposium. The papers were presented in 12 different sessions. Among them are Fire Safety Engineering: Cases & Incidents, Fire Safety Engineering: The Aims, Fire Detection, Explosions, Risk Analysis, Fire Safety Engineering: Case studies, Ventilation, Fire Safety Engineering: State of the Art, Fire Dynamics, Fixed Fire Fighting Systems (FFFS) and Evacuation and Human Behavior.

Each day was opened by invited Keynote Speakers (in total six) addressing broad topics of pressing interest. The Keynote Speakers, selected as leaders in their field, consisted of Hans Brun, the Swedish Defence University, Dr Iain Bowman, Mott MacDonald, Canada, Dr Ying Zhen Li, RISE Research Institutes of Sweden, Dr Johan Lundin, WSP, Sweden, Allan Skovlund, Greater Copenhagen Fire Department, Denmark and Prof David Purser, Hartford Environmental Research, UK. We are grateful that the keynote speakers were able to share their knowledge and expertise with the participants of the symposium.

sted, utgiver, år, opplag, sider
Borås, Sweden: RISE Research Institutes of sweden, 2018. s. 708
Emneord
tunnel; fire safety engineering; fire research; detection; explosion; risk analysis; ventilation; fire fighting systems; fire dynamics; evacuation
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-39948 (URN)978-91-88695-48-2 (ISBN)
Konferanse
Eighth International Symposium on Tunnel Safety and Security (ISTSS 2018)
Tilgjengelig fra: 2019-09-19 Laget: 2019-09-19 Sist oppdatert: 2019-09-19bibliografisk kontrollert
Anderson, J., Sjöström, J., Lönnermark, A., Persson, H. & Larsson, I. (2017). Assessment of Self-Heating in Wood Pellets by FE Modelling. In: : . Paper presented at 12th International Symposium on Fire Safety Science. Lund Sweden.June 12–16, 2017. (pp. 14). Lund, Article ID 340.
Åpne denne publikasjonen i ny fane eller vindu >>Assessment of Self-Heating in Wood Pellets by FE Modelling
Vise andre…
2017 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The self-heating process in a laboratory scale experiment has been modelled using the Comsol Multiphysics software. In the simulations the gas flow and air movement in the volume and heat diffusion in the bulk were taken into account however only one reaction in the pellets bulk is considered. The input data is found from measurements of the reaction chemistry and the heat transfer properties. It is found that all relevant physics is needed in order to obtain reasonable predictions in particular the heat transfer between the bulk and the gas is important but also condensation and evaporation of moisture.   

sted, utgiver, år, opplag, sider
Lund: , 2017
Emneord
heat transfer; fluid dynamics; CFD; modeling; self-heating
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-33323 (URN)
Konferanse
12th International Symposium on Fire Safety Science. Lund Sweden.June 12–16, 2017.
Merknad

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP/2007-2013) under grand agreement n°287026.

Tilgjengelig fra: 2018-02-27 Laget: 2018-02-27 Sist oppdatert: 2019-01-22bibliografisk kontrollert
Lönnermark, A. & Lange, D. (2017). Cascading effects during incidents: CascEff. In: Risk, Reliability and Safety: Innovating Theory and Practice - Proceedings of the 26th European Safety and Reliability Conference, ESREL 2016. Paper presented at 26th European Safety and Reliability Conference, ESREL 2016, 25 September 2016 through 29 September 2016 (pp. 18). , Article ID 181029.
Åpne denne publikasjonen i ny fane eller vindu >>Cascading effects during incidents: CascEff
2017 (engelsk)Inngår i: Risk, Reliability and Safety: Innovating Theory and Practice - Proceedings of the 26th European Safety and Reliability Conference, ESREL 2016, 2017, s. 18-, artikkel-id 181029Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Modern socio-technical systems are increasingly characterised by high degrees of interdependencies. Whereas these interdependencies generally make systems more efficient under normal operations, they contribute to cascading effects in times of crises. Therefore, challenges for emergency preparedness and response are growing significantly. An escalating incident in such an environment can lead to severe cascading effects and quickly become extremely difficult for emergency services to handle. The more complex the environment where an incident is evolving, the more vulnerable the system, the greater the risk for escalation and cascading effects. In such instances the incident management needs to be as efficient as possible and build on up to date decision support information. New strategies, structures and methodologies are, therefore, needed to meet these new challenges, including cross border cooperation in conducting operations and providing or receiving support across borders.

Emneord
Decision support systems, Reliability, Reliability theory, Safety engineering, Cascading effects, Cross-border, Decision supports, Emergency preparedness and response, Incident Management, Normal operations, Sociotechnical systems, Emergency services
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-31087 (URN)10.1201/9781315374987-17 (DOI)2-s2.0-85016192271 (Scopus ID)9781138029972 (ISBN)
Konferanse
26th European Safety and Reliability Conference, ESREL 2016, 25 September 2016 through 29 September 2016
Merknad

Conference code: 181029; Export Date: 23 August 2017; Conference Paper

Tilgjengelig fra: 2017-09-05 Laget: 2017-09-05 Sist oppdatert: 2019-08-08bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-6758-6067
v. 2.35.10