Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 196) Visa alla publikasjoner
Deng, Q., Zhang, L., Yang, Z., Lyu, Z., Bobrovs, V., Pang, X., . . . Yu, X. (2025). Photonic Terahertz Chaos Enabling High-Precision and Unambiguous Ranging. Laser & Photonics reviews, Article ID 2400667.
Åpne denne publikasjonen i ny fane eller vindu >>Photonic Terahertz Chaos Enabling High-Precision and Unambiguous Ranging
Vise andre…
2025 (engelsk)Inngår i: Laser & Photonics reviews, ISSN 1863-8880, E-ISSN 1863-8899, artikkel-id 2400667Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

Terahertz (THz, 0.3–10 THz) radar systems have garnered significant attention due to their superior capabilities in high-precision and robust sensing. However, the susceptibility to jamming, along with the sensing precision loss and ranging ambiguity induced by inflexible implementation of the conventional radar signal source, presents major challenges to the practical deployment of THz radars. Herein, a flexible photonic chaotic radar system is proposed at the THz band and investigate the ranging performance in precision and ambiguity. The photonic heterodyne detection scheme facilitates the generation of optoelectronic feedback loop-based THz chaos at 300 GHz, achieving a seamless connection between THz domains and optical domains. The system is experimentally demonstrated its superior performance of sub-centimeter resolution with 0.9345 cm and ranging unambiguity simultaneously. This work bridges the THz gap in the practical deployment of chaos theory and will pave the way for a new regime of THz radar empowered by chaos.

sted, utgiver, år, opplag, sider
John Wiley and Sons Inc, 2025
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-78076 (URN)10.1002/lpor.202400667 (DOI)2-s2.0-85215098121 (Scopus ID)
Merknad

The work was supported bythe National Key Research and Development Program of China undergrant 2022YFB2903800, Natural National Science Foundation of China under grant 62101483, Vetenskapsrådet under grant no. 2022-04798, and theLZP FLPP project “MIR FAST” under grant no. lzp 2023/1-0503.

Tilgjengelig fra: 2025-03-24 Laget: 2025-03-24 Sist oppdatert: 2025-03-24bibliografisk kontrollert
Bai, L., Zhang, L., Lyu, Z., Ozolins, O., Pang, X., Zhang, Q. & Yu, X. (2025). Utilizing State Probabilities to Curb Consecutive Errors in Photonic THz Communications. Journal of Lightwave Technology
Åpne denne publikasjonen i ny fane eller vindu >>Utilizing State Probabilities to Curb Consecutive Errors in Photonic THz Communications
Vise andre…
2025 (engelsk)Inngår i: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213Artikkel i tidsskrift (Fagfellevurdert) Epub ahead of print
Abstract [en]

The rapid evolution of high-speed communication technologies has brought serious inter-symbol interference (ISI). To cope with this issue, channel equalization techniques, such as feedforward equalization (FFE) and decision feedback equalization (DFE), are typically used to compensate for channel response to facilitate signal recovery, and forward error correction (FEC) code, such as low-density parity check (LDPC) codes, is widely deployed to improve link budget margin. However, the mutual influence between the equalizer and the decoder has yet to be thoroughly explored. In this paper, the state error decoding (SED) algorithm is proposed to enhance the decoding performance by effectively reducing the error probabilities and surpassing the limitations of traditional signal recovery methods. Experimental results in a photonic terahertz wireless communication system achieve error propagation mitigation and additional 0.2 dB link budget improvement by utilizing the proposed SED method, which confirms the effectiveness of the algorithm in reducing error propagation and improving system performance, paving the way for the development of broadband communications. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc., 2025
Emneord
Decision feedback equalizers; Forward error correction; Intersymbol interference; Decision feedback equalizer; Decision-feedback equalizers; Error propagation; Link budgets; Low-density parity check; Low-density parity-check; Photonic terahertz communication; Signal recovery; State errors; Tera Hertz; Budget control
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-78603 (URN)10.1109/JLT.2025.3563391 (DOI)2-s2.0-105003490382 (Scopus ID)
Tilgjengelig fra: 2025-06-09 Laget: 2025-06-09 Sist oppdatert: 2025-06-09bibliografisk kontrollert
Ostrovskis, A., Salgals, T., Krüger, B., Pittalà, F., Joharifar, M., Schatz, R., . . . Ozolins, O. (2024). 106.25 Gbaud On-Off Keying and Pulse Amplitude Modulation Links Supporting Next Generation Ethernet on Single Lambda. Journal of Lightwave Technology, 42(4), 1272
Åpne denne publikasjonen i ny fane eller vindu >>106.25 Gbaud On-Off Keying and Pulse Amplitude Modulation Links Supporting Next Generation Ethernet on Single Lambda
Vise andre…
2024 (engelsk)Inngår i: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 42, nr 4, s. 1272-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Development of Data Center based computing technology require energy efficient high-speed transmission links. This leads to optical amplification-free intensity modulation and direct detection (IM/DD) systems with low complexity equalization compliant with IEEE standardized electrical interfaces. Switching from on-off keying to multi-level pulse amplitude modulation would allow to reduce lane count for next generation Ethernet interfaces. We characterize 106.25 Gbaud on-off keying, 4-level and 6-level pulse amplitude modulation links using two integrated transmitters: O-band directly modulated laser and C-band externally modulated laser. Simple feed forward or decision feedback equalizer is used. We demonstrate 106.25 Gbaud on-off keying links operating without forward error correction for both transmitters. We also show 106.25 Gbaud 4-level and 6-level pulse amplitude modulation links with performance below 6.25% overhead hard-decision forward error threshold of 4.5×10-3. Furthermore, for EML-based transmitter we achieve 106.25 Gbaud 4-level pulse amplitude modulation performance below KP-FEC threshold of 2.2×10-4. That shows that we can use optics to support (2x)100 Gbps Ethernet on single lambda at expense of simple forward error correction.

HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-70085 (URN)10.1109/JLT.2023.3328774 (DOI)2-s2.0-85181568282 (Scopus ID)
Merknad

This work was supported by the Swedish Research Council (VR) projects 2019-05197 and BRAIN (2022-04798), The strategic innovation program Smarter Electronic Systems - a joint venture by Vinnova, Formas and the Swedish Energy Agency A-FRONTAHUL project (2023-00659), the H2020 ICT TWILIGHT Project (No. 781471), the ERDF-funded RINGO project (No. 1.1.1.1/21/A/052), the RTU Science Support Fund, the National Natural Science Foundation of China (U2006217, 61775015), the China Scholarship Council (202107090113), and the National Key Research and Development Program of China (2018YFB1801500). (Corresponding authors: X. Pang and O. Ozolins.)

Tilgjengelig fra: 2024-01-17 Laget: 2024-01-17 Sist oppdatert: 2024-06-18bibliografisk kontrollert
Joharifar, M., Dely, H., Durupt, L., Ostrovskis, A., Schatz, R., Puerta, R., . . . Pang, X. (2024). 16.9 Gb/s Single-Channel LWIR FSO Data Transmission with Directly Modulated QCL and MCT Detector. In: 2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings: . Paper presented at 2024 Optical Fiber Communications Conference and Exhibition, OFC 2024. San Diego, USA. 24 March 2024 through 28 March 2024. Institute of Electrical and Electronics Engineers Inc.
Åpne denne publikasjonen i ny fane eller vindu >>16.9 Gb/s Single-Channel LWIR FSO Data Transmission with Directly Modulated QCL and MCT Detector
Vise andre…
2024 (engelsk)Inngår i: 2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We experimentally demonstrate a room-temperature LWIR FSO link with a 9.1-μm directly modulated QCL and an MCT detector. Net bitrate of up to 16.9 Gb/s is achieved at both 15°C and 20°C over a 1-meter distance. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc., 2024
Emneord
Optical fibers; Bit rates; Data-transmission; Directly modulated; MCT detector; Single channels; Optical fiber communication
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-73583 (URN)10.1364/ofc.2024.th2a.25 (DOI)2-s2.0-85194237555 (Scopus ID)9781957171326 (ISBN)
Konferanse
2024 Optical Fiber Communications Conference and Exhibition, OFC 2024. San Diego, USA. 24 March 2024 through 28 March 2024
Tilgjengelig fra: 2024-06-18 Laget: 2024-06-18 Sist oppdatert: 2025-01-29bibliografisk kontrollert
Ostrovskis, A., Salgals, T., Koenigsmann, M., Farid, A., Marinins, A., Krüger, B., . . . Ozolins, O. (2024). 170 Gbaud On-Off-Keying SiP Ring Resonator Modulator-based Link for Short-Reach Applications. In: IEEE International Conference on Group IV Photonics GFP: . Paper presented at 2024 IEEE Silicon Photonics Conference, SiPhotonics 2024. Tokyo, Japan. 15 April 2024 through 18 April 2024. IEEE Computer Society
Åpne denne publikasjonen i ny fane eller vindu >>170 Gbaud On-Off-Keying SiP Ring Resonator Modulator-based Link for Short-Reach Applications
Vise andre…
2024 (engelsk)Inngår i: IEEE International Conference on Group IV Photonics GFP, IEEE Computer Society , 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We demonstrate a record 170 Gbaud on-off keying C-band silicon photonics ring resonator modulator-based transmitter with performance below the 6.7% overhead HD-FEC threshold after optical back-to-back and transmission over 100 meters of single mode fiber. © 2024 IEEE.

sted, utgiver, år, opplag, sider
IEEE Computer Society, 2024
Emneord
Digital television; Light modulators; Optical communication; Optical resonators; Photonic devices; Silicon compounds; Single mode fibers; C-bands; Direct-detection; Intensity modulation direct detection; Intensity modulations; On/off-keying; Performance; Ring resonator; Ring resonator modulator; Short-reach communication; Silicon photonics; Silicon photonics
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-74652 (URN)10.1109/SiPhotonics60897.2024.10543976 (DOI)2-s2.0-85196786514 (Scopus ID)9798350394047 (ISBN)
Konferanse
2024 IEEE Silicon Photonics Conference, SiPhotonics 2024. Tokyo, Japan. 15 April 2024 through 18 April 2024
Merknad

We thank Keysight for hosting the experiment and for loaning the M8199B AWG prototype and the UXR1104A Infiniium UXR-Series Oscilloscope. This work was also supported by the ERDF-funded RINGO project (No. 1.1.1.1/21/A/052), the RTU Science Support Fund, the H2020 ICT TWILIGHT Project (No. 781471), the Swedish Research Council (VR) projects 2019-05197 and 2022-04798, the National Natural Science Foundation of China (U2006217, 61775015), the China Scholarship Council (202107090113), and the National Key Research and Development Program of China (2018YFB1801500). 

Tilgjengelig fra: 2024-08-07 Laget: 2024-08-07 Sist oppdatert: 2024-08-07bibliografisk kontrollert
Zhang, J., Zhang, L., Pang, X., Ozolins, O. & Yu, X. (2024). Accelerated Information Processing Based on Deep Photonic Time-Delay Reservoir Computing. Journal of Lightwave Technology, 42(24), 8739-8747
Åpne denne publikasjonen i ny fane eller vindu >>Accelerated Information Processing Based on Deep Photonic Time-Delay Reservoir Computing
Vise andre…
2024 (engelsk)Inngår i: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 42, nr 24, s. 8739-8747Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Photonic time-delay reservoir computing (TDRC) is an optical neural network structure known for its simple hardware implementation. However, this simplicity reduces information processing speed due to its sequential time multiplexing mechanism, such as the masking operation in practical experiments. To address this, we employ a deep photonic TDRC structure to enhance reservoir dynamics, effectively reducing the mask size to accelerate processing while maintaining high performance. An extended state matrix is proposed to leverage the enriched dynamics without additional hardware costs, combining different nonlinear intensities and memory lengths to augment node states without physically expanding the reservoir. Experimentally validated in a speech recognition task, our approach accelerates processing by 10 times with only a 2.4% decrease in recognition accuracy, compared to a 13.1% accuracy deterioration in the conventional scheme, indicating significant acceleration in TDRC information processing while maintaining performance.

Emneord
Reservoirs, Task analysis, Hardware, Information processing, Photonics, Neural networks, Multiplexing, Computation acceleration, optical neural network, reservoir computing, speech recognition
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-76354 (URN)10.1109/JLT.2024.3438939 (DOI)
Tilgjengelig fra: 2025-01-29 Laget: 2025-01-29 Sist oppdatert: 2025-01-29bibliografisk kontrollert
Joharifar, M., Durupt, L., Dely, H., Ostrovskis, A., Schatz, R., Puerta, R., . . . Pang, X. (2024). Advancing LWIR FSO communication through high-speed multilevel signals and directly modulated quantum cascade lasers. Optics Express, 32(17), 29138-29148
Åpne denne publikasjonen i ny fane eller vindu >>Advancing LWIR FSO communication through high-speed multilevel signals and directly modulated quantum cascade lasers
Vise andre…
2024 (engelsk)Inngår i: Optics Express, E-ISSN 1094-4087, Vol. 32, nr 17, s. 29138-29148Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study investigates the potential of long-wave infrared (LWIR) free-space optical (FSO) transmission using multilevel signals to achieve high spectral efficiency. The FSO transmission system includes a directly modulated-quantum cascade laser (DM-QCL) operating at 9.1 µm and a mercury cadmium telluride (MCT) detector. The laser operated at the temperature settings of 15°C and 20°C. The experiment was conducted over a distance of 1 m and in a lab as a controlled environment. We conduct small-signal characterization of the system, including the DM-QCL chip and MCT detector, evaluating the end-to-end response of both components and all associated electrical elements. For large-signal characterization, we employ a range of modulation formats, including non-return-to-zero on-off keying (NRZ-OOK), 4-level pulse amplitude modulation (PAM4), and 6-level PAM (PAM6), with the objective of optimizing both the bit rate and spectral efficiency of the FSO transmission by applying pre- and post-processing equalization. At 15°C, the studied LWIR FSO system achieves net bitrates of 15 Gbps with an NRZ-OOK signal and 16.9 Gbps with PAM4, both below the 6.25% overhead hard decision-forward error correction (6.25%-OH HD-FEC) limit, and 10 Gbps NRZ-OOK below the 2.7% overhead Reed-Solomon RS(528,514) pre-FEC (KR-FEC limit). At 20°C, we obtained net bitrates of 14.1 Gbps with NRZ-OOK, 16.9 Gbps with PAM4, and 16.4 Gbps with PAM6. Furthermore, we evaluate the BER performance as a function of the decision feedback equalization (DFE) tap number to explore the role of equalization in enhancing signal fidelity and reducing errors in FSO transmission. Our findings accentuate the competitive potential of DM-QCL and MCT detector-based FSO transceivers with digital equalization for the next generation of FSO communication systems. 

sted, utgiver, år, opplag, sider
Optica Publishing Group (formerly OSA), 2024
Emneord
Amplitude shift keying; Binary phase shift keying; Chirp modulation; Chronometers; Clock and data recovery circuits (CDR circuits); Comb filters; Decision feedback equalizers; Fiber to the x; Frequency division multiplexing; Frequency shift keying; Infrared transmission; Intermodulation; Multicarrier modulation; Optical transceivers; Phase shift; Pulse amplitude modulation; Pulse width modulation; Q switched lasers; Radio transceivers; Reed-Solomon codes; Telephone interference; Bit rates; Cascade lasers; Directly modulated; Free-space optical; Longwave infrared; Mercury cadmium telluride detector; Multilevels; Non-return-to-zero; On/off-keying; Quantum cascades; Forward error correction
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-74941 (URN)10.1364/OE.530228 (DOI)2-s2.0-85201320855 (Scopus ID)
Merknad

Horizon 2020 Framework Programme cFLOW project (828893); Vetenskapsr\u00E5det (2019-05197); Project \u2019BRAIN\u2019 (2022-04798); EU COST Action CA19111 NEWFOCUS; The LZP FLPP Project \u2019MIR-FAST\u2019 (lzp-2023-1-0503); The Strategic innovation program smarter electronic systems - a joint venture by Vinnona, Forms and the Swedish Energy Agency A-FRONTHAUL Project (2023-00659).

Tilgjengelig fra: 2024-09-05 Laget: 2024-09-05 Sist oppdatert: 2024-09-05bibliografisk kontrollert
Puerta, R., Jiang, T., Joharifar, M., Ostrovskis, A., Salgals, T., Rubuls, K., . . . Pang, X. (2024). Analog Mobile Fronthaul for 6G and Beyond. Journal of Lightwave Technology, 42(21), 7458
Åpne denne publikasjonen i ny fane eller vindu >>Analog Mobile Fronthaul for 6G and Beyond
Vise andre…
2024 (engelsk)Inngår i: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 42, nr 21, s. 7458-Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper highlights the potential of photonic-assisted analog fronthaul solutions, particularly analog radio-over-fiber (ARoF) and analog radio-over-free-space-optics (ARoFSO), as prospective alternatives for the development of 6G applications. First, we present (New-Radio) NR/5G conformance testing of ARoF and ARoFSO fronthaul links, including the assessment of the error vector magnitude (EVM) and adjacent channel leakage power ratio (ACLR) to demonstrate compliance with the minimum transmitter requirements outlined by the 3rd Generation Partnership Project (3GPP) standards. Then, with focus on future 6G Distributed-MIMO (D-MIMO) networks, we conduct experimental validations of coherent joint transmissions (CJT) using ARoF and ARoFSO fronthaul links in a 2-transmitter D-MIMO network, demonstrating MIMO gains of up to 5.35 dB and that these links meet the stringent synchronization demands for CJT. These tests represent the first realizations of CJT utilizing ARoF and ARoFSO links. Finally, for consistency, we validate CJT in a 4-transmitter D-MIMO network with ARoF fronthaul links, with MIMO gains up to 9.4 dB and confirming our previous results. This evidence indicates that these technologies hold significant potential for applications in future 6G systems.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc., 2024
Emneord
5G mobile communication systems; MIMO systems; Optical fibers; Radio links; Radio transmission; Radio-over-fiber; Regulatory compliance; 3rd generation; 3rd generation partnership project; 6g mobile communication; Analog fronthaul; Coherent joint transmission; Conformance testing; Distributed antennas; Free Space Optical communication; Gain; Joint transmissions; MIMO communication; Mobile communications; Optical-fiber communication; Radio-over-fibers; Radio-over-FSO; Wireless communications; Antennas
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-74794 (URN)10.1109/JLT.2024.3435770 (DOI)2-s2.0-85200250985 (Scopus ID)
Merknad

This work was supported in part by VINNOVA-funded project \u2018A-FRONTHAUL\u2019 2023-00659, the Swedish Research Council (VR) project 2019-05197 and project \u2018BRAIN\u2019 2022-04798, in part by the COST Action CA19111 NEWFOCUS, and in part by the LZP FLPP project \u2018MIR-FAST\u2019 (lzp-2023/1-0503). 

Tilgjengelig fra: 2024-08-27 Laget: 2024-08-27 Sist oppdatert: 2025-02-24bibliografisk kontrollert
Puerta, R., Ostrovskis, A., Rubuls, K., Pittalà, F., Gruen, M., Louchet, H., . . . Pang, X. (2024). Approaching Theoretical Performance of 6G Distributed MIMO with Optical Analog Fronthaul. In: : . Paper presented at CLEO: Science and Innovations 2024. Optical Society of America, Article ID SW4N.3.
Åpne denne publikasjonen i ny fane eller vindu >>Approaching Theoretical Performance of 6G Distributed MIMO with Optical Analog Fronthaul
Vise andre…
2024 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We experimentally validate coherent joint transmission (CJT) in a D-MIMO system with four transmitters using analog fronthaul and RoF links, fulfilling CJT stringent synchronization requirements. MIMO gains close to theoretical values are demonstrated. © Optica Publishing Group 2024

sted, utgiver, år, opplag, sider
Optical Society of America, 2024
Serie
Technical Digest Series
Emneord
Optical fiber communication; Wavefronts; Distributed MIMO; Joint transmissions; Optical analogues; Stringents; Theoretical performance; Theoretical values
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-76007 (URN)2-s2.0-85205113317 (Scopus ID)
Konferanse
CLEO: Science and Innovations 2024
Forskningsfinansiär
Vinnova, 2023-00659Swedish Research Council Formas, 2023-00659Swedish Energy Agency, 2023-00659Swedish Foundation for Strategic Research, SM21-0047)Swedish Research Council, 2019-05197Swedish Research Council, 2022 04798
Merknad

This work is supported by the strategic innovation program Smarter Electronic Systems - a joint venture by Vinnova, Formas and the Swedish Energy Agency A-FRONTAHUL project (2023-00659), the Swedish Foundation for Strategic Research (SM21-0047), and the Swedish Research Council projects 2019-05197 and project 'BRAIN' 2022 04798. We thank Keysight Technologies for the loan of the M8194A AWG.

Tilgjengelig fra: 2024-11-14 Laget: 2024-11-14 Sist oppdatert: 2024-11-14bibliografisk kontrollert
Puerta, R., Ostrovskis, A., Rubuls, K., Pittalà, F., Gruen, M., Louchet, H., . . . Pang, X. (2024). Approaching Theoretical Performance of 6G Distributed MIMO with Optical Analog Fronthaul. In: 2024 Conference on Lasers and Electro-Optics, CLEO 2024: . Paper presented at Conference on Lasers and Electro-Optics, CLEO 2024. Charlotte. 7 May 2024 through 10 May 2024. Institute of Electrical and Electronics Engineers Inc.
Åpne denne publikasjonen i ny fane eller vindu >>Approaching Theoretical Performance of 6G Distributed MIMO with Optical Analog Fronthaul
Vise andre…
2024 (engelsk)Inngår i: 2024 Conference on Lasers and Electro-Optics, CLEO 2024, Institute of Electrical and Electronics Engineers Inc. , 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We experimentally validate coherent joint transmission (CJT) in a D-MIMO system with four transmitters using analog fronthaul and RoF links, fulfilling CJT stringent synchronization requirements. MIMO gains close to theoretical values are demonstrated. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc., 2024
Emneord
4G mobile communication systems; Laser power transmission; Optical fiber communication; Optical transmitters; 6g mobile communication; Electro-optical; Electro-optical waveguide; Gain; Laser and electrooptic; Laser stability; Mobile communications; Optical fiber networks; Optical-; Power demands; Optical fibers
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-76491 (URN)10.1364/cleo_si.2024.sw4n.3 (DOI)2-s2.0-85210474274 (Scopus ID)9781957171395 (ISBN)
Konferanse
Conference on Lasers and Electro-Optics, CLEO 2024. Charlotte. 7 May 2024 through 10 May 2024
Merknad

This work is supported by the strategic innovation program Smarter Electronic Systems - a joint venture by Vinnova, Formas and the Swedish Energy Agency A-FRONTAHUL project (2023-00659), the Swedish Foundation for Strategic Research (SM21-0047), and the Swedish Research Council projects 2019-05197 and project 'BRAIN' 2022 04798. We thank Keysight Technologies for the loan of the M8194A AWG

Tilgjengelig fra: 2025-01-27 Laget: 2025-01-27 Sist oppdatert: 2025-01-27bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-9839-7488
v. 2.47.0