Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 85) Visa alla publikasjoner
Karlsson, S. (2024). Corrigendum to “Viscosity of alumina doped soda lime silicate glasses – observation of anomaly in the linear increase as Al2O3 replaces SiO2” [Journal of Non-Crystalline Solids Vol 573 (2021) start 121149]. Journal of Non-Crystalline Solids, 627, 122828-122828, Article ID 122828.
Åpne denne publikasjonen i ny fane eller vindu >>Corrigendum to “Viscosity of alumina doped soda lime silicate glasses – observation of anomaly in the linear increase as Al2O3 replaces SiO2” [Journal of Non-Crystalline Solids Vol 573 (2021) start 121149]
2024 (engelsk)Inngår i: Journal of Non-Crystalline Solids, ISSN 0022-3093, E-ISSN 1873-4812, Vol. 627, s. 122828-122828, artikkel-id 122828Artikkel i tidsskrift (Annet vitenskapelig) Published
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-70105 (URN)10.1016/j.jnoncrysol.2024.122828 (DOI)
Tilgjengelig fra: 2024-01-21 Laget: 2024-01-21 Sist oppdatert: 2024-01-22bibliografisk kontrollert
Karlsson, S. (2024). Corrigendum to “Viscosity of alumina doped soda lime silicate glasses – observation of anomaly in the linear increase as Al2O3 replaces SiO2” [Journal of Non-Crystalline Solids Vol 573 (2021) start 121149]. Journal of Non-Crystalline Solids, 627, 122828-122828, Article ID 122828.
Åpne denne publikasjonen i ny fane eller vindu >>Corrigendum to “Viscosity of alumina doped soda lime silicate glasses – observation of anomaly in the linear increase as Al2O3 replaces SiO2” [Journal of Non-Crystalline Solids Vol 573 (2021) start 121149]
2024 (engelsk)Inngår i: Journal of Non-Crystalline Solids, ISSN 0022-3093, E-ISSN 1873-4812, Vol. 627, s. 122828-122828, artikkel-id 122828Artikkel i tidsskrift (Annet vitenskapelig) Published
Abstract [en]

The authors regret publication of Fig. 1 in [1], that clearly do not show the rheometer setup, it should be replaced with the following Fig. 1.

HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-71543 (URN)10.1016/j.jnoncrysol.2024.122828 (DOI)
Forskningsfinansiär
Swedish Research Council Formas, 2018-00707
Tilgjengelig fra: 2024-02-05 Laget: 2024-02-05 Sist oppdatert: 2024-02-05bibliografisk kontrollert
Zäll, E., Järn, M., Karlsson, S., Tryggeson, H., Tuominen, M., Sundin, M. & Wågberg, T. (2023). Aerosol-based deposition of broadband antireflective silica coating with closed mesoporous structure. Solar Energy Materials and Solar Cells, 250, 112078-112078, Article ID 112078.
Åpne denne publikasjonen i ny fane eller vindu >>Aerosol-based deposition of broadband antireflective silica coating with closed mesoporous structure
Vise andre…
2023 (engelsk)Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 250, s. 112078-112078, artikkel-id 112078Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Solar energy will be a crucial part of the sustainable, fossil free energy production of the future. A majority of this will be produced by solar collectors and photovoltaics. Important for the efficient utilization of the incident solar energy for both technologies are a cover glass with antireflective coatings giving it a high solar transmittance. In the current paper we describe the development of antireflective mesoporous silica coatings on low-iron float glass using the aerosol-based nFOG™ deposition technique. The coatings exhibit a hexagonal and closed pore structure, high smoothness, superhydrophilic properties (contact angle <5°) and consistent thicknesses of approximately 110 nm. This is in line with optimal thickness determined from simulations of the antireflective behavior. Low-iron float glass coated on both sides show a highly reproducible solar weighted transmittance of 95% in the wavelength range 300–2500 nm and an antireflective effect increasing with incident angle. The smoothness, closed pores and low contact angle indicate a high cleanability, which in combination with the high transmittance render a competitive broadband antireflective coating well adapted for solar glass applications.

Emneord
Antireflective coating, Aerosol-based deposition, nFOG™, Hexagonal mesoporous silica, Solar collector, Solar glass
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-61135 (URN)10.1016/j.solmat.2022.112078 (DOI)
Prosjekter
Development of Functional Coatings on Cover Glass for Produktion of more Efficient Solar CollectorsTransparent multifunctional thin films on low–iron float glass for solar energy applications
Forskningsfinansiär
Vinnova, 2018-02588Swedish Energy Agency, 52487-1Swedish Energy Agency, 45419-1Swedish Research Council, 2017–59504862
Merknad

Funding: Vinnova 2018-02588. Energimyndigheten 45419-1. Vetenskapsrådet 2017-59504862

Tilgjengelig fra: 2022-11-08 Laget: 2022-11-08 Sist oppdatert: 2024-03-25bibliografisk kontrollert
Karlsson, S., Järn, M. & Zäll, E. (2023). Antireflektiv beläggning i världsklass ger effektivare solfångare. GLAS (4), 36-37
Åpne denne publikasjonen i ny fane eller vindu >>Antireflektiv beläggning i världsklass ger effektivare solfångare
2023 (svensk)Inngår i: GLAS, nr 4, s. 36-37Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm)) Published
Abstract [sv]

I ett nyligen avslutat forskningsprojekt har Absolicon Solar Collector tillsammans med RISE Research Institutes of Sweden och Umeå universitet utvecklat en ny toppmodern antireflektiv beläggning som kan göra Absolicons solfångare än mer effektiva. Nu siktar man på ett nytt projekt för att skala upp metoden.

HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-68087 (URN)
Prosjekter
Utveckling av Funktionella Ytbeläggningar på Täckglaset för Produktion av Effektivare Solfångare
Forskningsfinansiär
Vinnova, 2018-02588Swedish Energy Agency, 52487-1
Tilgjengelig fra: 2023-11-23 Laget: 2023-11-23 Sist oppdatert: 2023-11-24bibliografisk kontrollert
Zäll, E., Karlsson, S., Järn, M., Segervald, J., Lundberg, P. & Wågberg, T. (2023). Durability of antireflective SiO2 coatings with closed pore structure. Solar Energy Materials and Solar Cells, 261, Article ID 112521.
Åpne denne publikasjonen i ny fane eller vindu >>Durability of antireflective SiO2 coatings with closed pore structure
Vise andre…
2023 (engelsk)Inngår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 261, artikkel-id 112521Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The use of antireflective coatings to increase the transmittance of the cover glass is a central aspect of achieving high efficiencies for solar collectors and photovoltaics alike. Considering an expected lifetime of 20–30 years for solar energy installations, the durability of the antireflective surfaces is essential. Here, a novel antireflective SiO2 coating with a hexagonally ordered closed pore structure, produced with an aerosol-based sol-gel method is benchmarked against two commercial coatings; produced with acid etching and sol-gel roll coating. The optical and mechanical properties together with contact angle characteristics were evaluated before and after various durability tests, including climate chamber tests, outdoor exposure, and abrasion. Compared to the commercial antireflective coatings with open pore structures, the novel coating performed in parity, or better, in all tests. Based on the results of humidity freeze and industrial climate chamber tests, it appears that the coating with closed pore structure has a better ability to prevent water adsorption. Additionally, the closed pore structure of the coating seems to minimize the accumulation of dirt and deposits. The abrasion and cleanability test further confirm the advantages of a closed pore structure, showcasing the coating's mechanical durability. While the coatings exhibit similar hardness and reduced elastic modulus, the closed pore coating proves to be even harder after undergoing the industrial climate chamber test, but also slightly more brittle, as indicated by the probability of crack initiation. In summary the closed pore structure is well suited for tempered and arid climates, making it a truly competitive alternative to existing antireflective coatings.

Emneord
Antireflective coating, Aerosol-based deposition, Accelerated ageing, Durability, Solar collector, Solar glass
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-66104 (URN)10.1016/j.solmat.2023.112521 (DOI)
Prosjekter
Development of Functional Coatings on Cover Glass for Produktion of more Efficient Solar CollectorsTransparent multifunctional thin films on low–iron float glass for solar energy applications
Forskningsfinansiär
Vinnova, 2018-02588Swedish Research Council, 2017-59504862Swedish Research Council, 2021–04629Swedish Energy Agency, 45419-1Swedish Energy Agency, 52487-1
Merknad

This work was supported by funding from Vinnova, the Swedish Innovation Agency's Material-based Competitiveness program [Grant No. 2018-02588]; Vetenskapsradet (Grant No. 2017-59504862, 2021–04629); Swedish Energy Agency (Grant No. 45419-1 and 52487-1); the Industrial doctoral school at UmU and Absolicon.

Tilgjengelig fra: 2023-08-25 Laget: 2023-08-25 Sist oppdatert: 2023-08-28bibliografisk kontrollert
Karlsson, S., Eklund, P., Österlund, L., Birch, J. & Ali, S. (2023). Effects of deposition temperature on the mechanical and structural properties of amorphous Al-Si-O thin films prepared by radio frequency magnetron sputtering. Thin Solid Films, 787, Article ID 140135.
Åpne denne publikasjonen i ny fane eller vindu >>Effects of deposition temperature on the mechanical and structural properties of amorphous Al-Si-O thin films prepared by radio frequency magnetron sputtering
Vise andre…
2023 (engelsk)Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 787, artikkel-id 140135Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Aluminosilicate (Al–Si–O) thin films containing up to 31 at.% Al and 23 at.% Si were prepared by reactive RF magnetron co-sputtering. Mechanical and structural properties were measured by indentation and specular reflectance infrared spectroscopy at varying Si sputtering target power and substrate temperature in the range 100 to 500 °C. It was found that an increased substrate temperature and Al/Si ratio give denser structure and consequently higher hardness (7.4 to 9.5 GPa) and higher reduced elastic modulus (85 to 93 GPa) while at the same time lower crack resistance (2.6 to 0.9 N). The intensity of the infrared Si-O-Si/Al asymmetric stretching vibrations shows a linear dependence with respect to Al concentration. The Al–O–Al vibrational band (at 1050 cm−1) shifts towards higher wavenumbers with increasing Al concentration which indicates a decrease of the bond length, evidencing denser structure and higher residual stress, which is supported by the increased hardness. The same Al–O–Al vibrational band (at 1050 cm−1) shifts towards lower wavenumber with increasing substrate temperature indicating an increase in the average coordination number of Al.

Emneord
Aluminosilicate, Thin films, Magnetron sputtering, Nanoindentation, Hardness, Crack resistance, Infrared spectroscopy
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-68138 (URN)10.1016/j.tsf.2023.140135 (DOI)
Prosjekter
Energi- och resurseffektiva produktionsprocesser för hållbara ytbeläggningsmaterialTunnare och starkare glas för hållbar produktion och konsumtion
Forskningsfinansiär
The Crafoord Foundation, 2022-0692Swedish Energy Agency, 52740-1Swedish Research Council Formas, 2018-00707
Merknad

SK and PE acknowledge financial support by the Swedish Energy Agency (grant no. 52740-1). SK acknowledge financial support by FORMAS, the Swedish Research Council for Sustainable Development (grant no. 2018-00707). SA acknowledge the financial support from the KKL Advanced Materials, LNU (grant no. 87202002) and Crafoord Foundation (grant no. 2022-0692).

Tilgjengelig fra: 2023-12-01 Laget: 2023-12-01 Sist oppdatert: 2023-12-05bibliografisk kontrollert
Karlsson, S. (2023). Functional cover glass materials for solar energy applications. In: : . Paper presented at 7th European Congress and Exhibition on Advanced Materials and Processes - FEMS EUROMAT 2023, Frankfurt am Main, Germany..
Åpne denne publikasjonen i ny fane eller vindu >>Functional cover glass materials for solar energy applications
2023 (engelsk)Konferansepaper, Oral presentation with published abstract (Annet vitenskapelig)
Abstract [en]

Glass materials are essential in everyone’s life by enabling daylight to reach the interior of our buildings,being the primary component for communication via optical fibers and a key component in electronic devices as protective cover and/or dielectric material. It is also an essential component in solar energy applications which comprise, e.g., photovoltaics , solar thermal collectors, greenhouses and algae reactors, by acting as a protective and light transmitting barrier. Adding functionalities to glass in an intelligent way creates opportunities to enhance the properties of the glass material for its use. There are several possibilities to add functionalities and the wider concept Transparent Intelligence will be briefly introduced and how it can aid our efforts to overcome today’s societal challenges. Glass as a cover material for solar energy applications constitutes a significant part of the costs and isan important component for efficient light capture and protection to the environment. The research and development of cover glass for solar energy applications have so far received limited attention eventhough it is an important material for our future sustainable development. Recent research efforts have provided knowledge of which properties that needs to be optimized ‐ balancing efficiency, service lifetime and cost. The challenges of cover glass for different solar energy applications differs somewhat but all have in common the efficient solar light capture and protection to the environment. Thus, theknow‐how can be used in several different industrial sectors. The fundamentals of cover glasses for solarenergy applications as well as previous and on‐going project concepts will be presented. This includes i) state‐of‐the‐art of cover materials for greenhouses, ii) results on optimization of cover glass for photovoltaics, iii) initial results on how to provide both anti‐reflective and anti‐soiling properties,iv) results on broadband antireflective coatings for solar thermal energy, and v) other promising concepts. At last will some future challenges and needs be discussed, e.g., in relation to the concept ofideal material choices for PV.

Emneord
Solar energy, Cover glass, Antireflection, Photovoltaics
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-67104 (URN)
Konferanse
7th European Congress and Exhibition on Advanced Materials and Processes - FEMS EUROMAT 2023, Frankfurt am Main, Germany.
Prosjekter
Tunnare och starkare glas för hållbar produktion och konsumtionTransparenta multifunktionella tunnfilmer på lågjärnglas för solcellsapplikationerUtveckling och testning av snö- och isavvisande ytbeläggningar för solcellerGlasfasader som SolcellsmodulerSemi-transparent solcells- och fotokromt smart fönsterUtveckling av Funktionella Ytbeläggningar på Täckglaset för Produktion av Effektivare Solfångare
Forskningsfinansiär
Swedish Energy Agency, 52487-1Swedish Energy Agency, 46360-2Swedish Energy Agency, 52472-1Swedish Energy Agency, P2022-00859Vinnova, 2018-02588Swedish Research Council Formas, 2018-00707
Merknad

Energimyndigheten 52487-1, 46360-2, P2022-00859. Vinnova 2018-02588. Forskningsrådet Formas 2018-00707.

Tilgjengelig fra: 2023-09-13 Laget: 2023-09-13 Sist oppdatert: 2023-09-28bibliografisk kontrollert
Sytjugov, I. & Karlsson, S. (2023). Glasfasader som solceller. GLAS, 32-33
Åpne denne publikasjonen i ny fane eller vindu >>Glasfasader som solceller
2023 (svensk)Inngår i: GLAS, s. 32-33Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm)) Published
Abstract [sv]

I det pågående forskningsprojektet "Glasfasader som solceller" utvecklas lamellglas för fasader med energigenererande funktion. Glasfasader kan konverteras till semitransparenta solceller med ett polymerlaminat dopat med ljusomvandlande nanopartiklar (så kallade kvantprickar) med solceller fästa i kanten på lamellglaset.

sted, utgiver, år, opplag, sider
Glasbranschföreningen, 2023
Emneord
solenergi, kvantprickar, glasfasader, solcellsfönster
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-64214 (URN)
Prosjekter
Glasfasader som solcellsmoduler
Forskningsfinansiär
Swedish Energy Agency, 46360-2
Merknad

Funding: Energimyndigheten 46360-2

Tilgjengelig fra: 2023-03-10 Laget: 2023-03-10 Sist oppdatert: 2023-03-14bibliografisk kontrollert
Karlsson, S., Österlund, L. & Anand, S. (2023). Multifunktionella glasytor för solceller. GLAS (4), 38-39
Åpne denne publikasjonen i ny fane eller vindu >>Multifunktionella glasytor för solceller
2023 (svensk)Inngår i: GLAS, nr 4, s. 38-39Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm)) Published
Abstract [sv]

I ett forskningsprojekt som kommer avslutas vid årsskiftet har framtidens multifunktionella glasytor för solceller utvecklats. Antireflektiva, UV-skyddande, fotokatalytiska och lättrengörliga glasytor är egenskaperna som glasytorna kommer att få. Forskningsidén baseras på tidigare kunskap ifrån forskning vid RISE, Uppsala universitet och KTH och förväntas leda till effektiva solceller med längre livslängd.

Emneord
solenergi, solceller, antireflektiv, glas
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-68088 (URN)
Forskningsfinansiär
Swedish Energy Agency, 52487-1
Tilgjengelig fra: 2023-11-23 Laget: 2023-11-23 Sist oppdatert: 2023-11-24bibliografisk kontrollert
Karlsson, S., Kozłowski, M., Grund, L., Andersson, S., Haller, K. & Persson, K. (2023). Non-destructive strength testing of microindented float glass by a nonlinear acoustic method. Construction and Building Materials, 391, Article ID 131748.
Åpne denne publikasjonen i ny fane eller vindu >>Non-destructive strength testing of microindented float glass by a nonlinear acoustic method
Vise andre…
2023 (engelsk)Inngår i: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 391, artikkel-id 131748Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The present paper describes a method for non-destructive testing of the glass strength. Square 10 × 10 cm2 samples of annealed float glass was inflicted with a controlled defect in the centre of the atmospheric side using Vickers microindentation-induced cracking with a force of 2 N, 5 N and 10 N and compared to an un-indented reference. The samples were non-destructively tested using a nonlinear acoustic wave method resulting in defect values. The average of the defect values was found to linearly correlate to the indentation force in a log–log relationship. The samples were subsequently tested in a ring-on-ring setup that allows for an equibiaxial stress state. The indentation-induced cracking gave practically realistic strength values in the range of 45 to 110 MPa. The individual sample values for failure stress as a function of normalized defect value show linear trends with approximately half of the data within 95% confidence limit. In summary, this study provides an initial proof-of-concept for a non-destructive testing of the strength of glass.

Emneord
Float glass, Non-destructive testing, Glass strength, Indentation cracking, Microindentation, Nonlinear acoustic wave, Ring-on-ring test
HSV kategori
Identifikatorer
urn:nbn:se:ri:diva-64863 (URN)10.1016/j.conbuildmat.2023.131748 (DOI)
Prosjekter
Hållfasthetsklassificering av planglas för bättre kvalitet - validering av metod genom väldefinierade ytdefekter och hållfasthetsprovningTunnare och starkare glas för hållbar produktion och konsumtion
Forskningsfinansiär
ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 19-479Swedish Research Council Formas, 2018-00707
Merknad

ÅForsk (Ångpanneföreningens Forskningsstiftelse) 19-479. Forskningsrådet Formas 2018-00707. 

Tilgjengelig fra: 2023-05-22 Laget: 2023-05-22 Sist oppdatert: 2023-07-05bibliografisk kontrollert
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-2160-6979
v. 2.41.0