Endre søk
Link to record
Permanent link

Direct link
Alternativa namn
Publikasjoner (1 av 1) Visa alla publikasjoner
Jena, N. K., Lyne, Å. L., Arul Murugan, N. A., Ågren, H. & Birgisson, B. (2017). Atomic level simulations of the interaction of asphaltene with quartz surfaces: role of chemical modifications and aqueous environment. Materials and Structures, 50(1), Article ID 99.
Åpne denne publikasjonen i ny fane eller vindu >>Atomic level simulations of the interaction of asphaltene with quartz surfaces: role of chemical modifications and aqueous environment
Vise andre…
2017 (engelsk)Inngår i: Materials and Structures, ISSN 1359-5997, E-ISSN 1871-6873, Vol. 50, nr 1, artikkel-id 99Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Understanding the properties of bitumen and its interaction with mineral aggregates is crucial for future strategies to improve roads and highways. Knowledge of basic molecular and electronic structures of bitumen, one out of the two main components of asphalt, poses a major step towards achieving such a goal. In the present work we employ atomistic simulation techniques to study the interaction of asphaltenes, a major constituent of bitumen, with quartz surfaces. As an effective means to tune adhesion or cohesion properties of asphaltenes and mineral surfaces, we propose chemical modification of the pristine asphaltene structure. By the choice of substituent and site of substitution we find that adhesion between the asphaltene molecule and the quartz surface can easily be improved at the same time as the cohesive interaction between the asphaltene units is reduced, while other substituents may lead to the opposite effect. We also provide insight at the molecular level into how water molecules affect interactions between asphaltenes and quartz. Our approach emphasizes a future role for advanced atomistic modeling to understand the properties of bitumen and suggest further improvements.

sted, utgiver, år, opplag, sider
Kluwer Academic Publishers, 2017
Adhesion, Bitumen, Cohesion, Molecular dynamics, Quartz, Bituminous materials, Chemical modification, Electronic structure, Molecules, Aqueous environment, Atomic level simulations, Atomistic modeling, Atomistic simulations, Cohesion properties, Cohesive interactions, Asphaltenes
HSV kategori
urn:nbn:se:ri:diva-29355 (URN)10.1617/s11527-016-0880-y (DOI)2-s2.0-84994500697 (Scopus ID)
Tilgjengelig fra: 2017-05-08 Laget: 2017-05-08 Sist oppdatert: 2020-01-30bibliografisk kontrollert
ORCID-id: ORCID iD iconorcid.org/0000-0003-0889-6078
v. 2.43.0