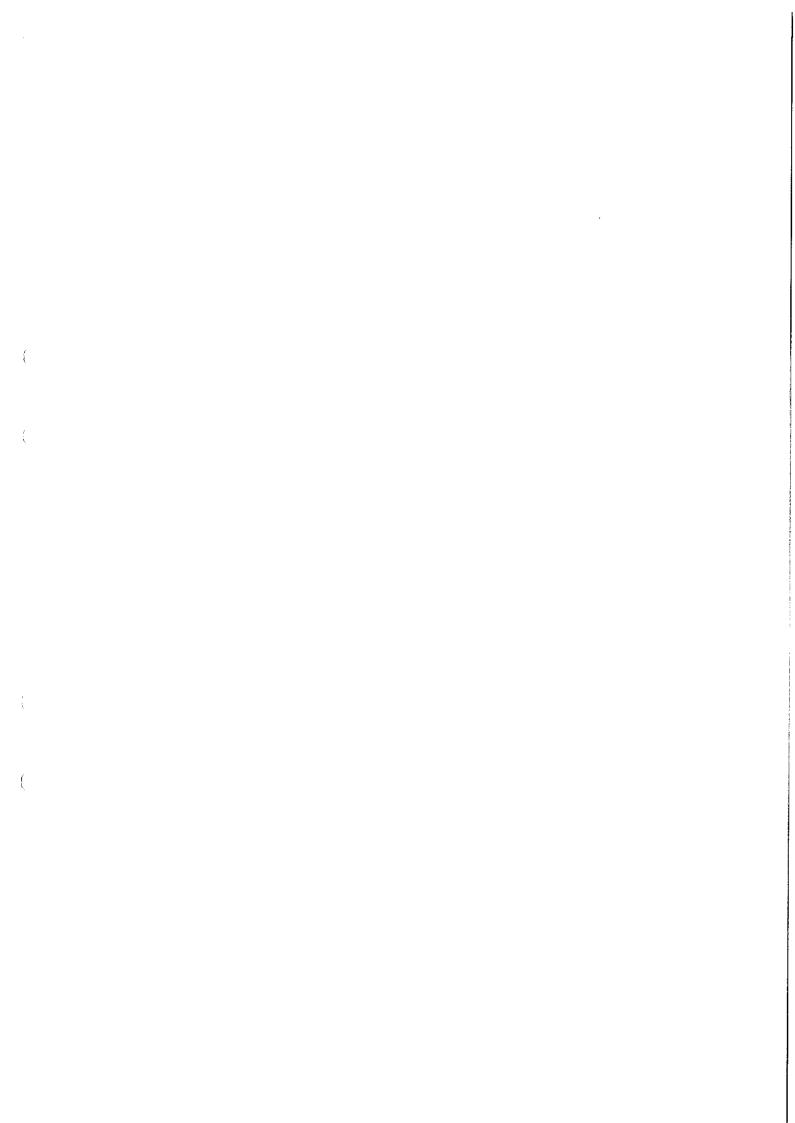

2003:24

SCHOUENBORG, Björn, AURSTAD, Joralf, HAGNESTÅL, Lennart, PETURSSON Petur & WINBLAD, Jan.


Test methods adapted for alternative and recycled, porous aggregate materials Part 3 – Water absorption

NORDTEST Project No. 1531-01

SP Swedish National Testing and Research Institute Building Technology SP REPORT 2003:24

Abstract

This report presents the results of Nordtest project No. 1580-02. It is the third report in a series of projects dealing with test methods for mainly alternative and recycled aggregates (1292-96 and 1393-97). This study focuses on the problem of water absorption of porous aggregates in atmospheric pressure in accordance with EN 1097-6 Determination of particle density and water absorption, and the implication on durability aspects.

The water absorption has been measured on incinerator bottom ash, crushed concrete, porous basalt and lightweight aggregate (expanded clay). The test procedure followed EN 1097-6 for atmospheric pressure. In addition a long term test of 300 days water soaking was performed. Boiling and vacuum were also used in order to see whether a quick method could be developed.

The results clearly show that water absorption for 24 hours in atmospheric pressure and conditioning is not suitable for these very porous materials. They also show that there is a significant difference when pre-drying the materials before testing compared to soaking the materials in a natural state, "as delivered". The four tested materials performed quite differently during long term saturation in relation to the quick tests, which indicates that it may be difficult to find one unique quick test method valid for all of them.

The long time to water saturate the materials also has implications for other tests, e.g. durability, when the materials shall be conditioned and/or tested in a wet condition. One such example is compaction before tri-axial dynamic testing which is usually performed in a wet condition. Also when assessing the frost resistance, the materials shall be saturated before the freeze-thaw cycles. If this is done for only 24 hours the results could be unreliable.

It has not been possible to develop one unique, quick test methods valid for all materials. Until such a method is developed, one has to let the materials absorb water until steady state is reached or develop an indirect method validated for each type of material!

Key words: Aggregates, Recycled materials, test methods, water absorption.

SP Sveriges Provnings- och Forskningsinstitut SP Rapport 2003:24 ISBN 91-7848-960-1 ISSN 0284-5172 Borås 2003

SP Swedish National Testing and Research Institute SP Report 2003;24

Postal address: Box 857, SE-501 15 BORÅS Sweden Telephone +46 33 16 50 00 Telex 36252 Testing S Telefax +46 33 13 55 02

Contents

			Page
A	BSTRA	CT	11
C	ONTEN	NTS	111
P	REFAC	E	IV
1	INI	TRODUCTION	1
	2.1	EUROPEAN STANDARD	
	2.2	STANDARD WATER ABSORPTION TEST BY USE OF PYKNOMETER.	
	2.3	VACUUM TREATMENT	
	2.4	Boiling	
	2.5	LONG TERM SATURATION	
2.	.6]	TEST SCHEME	4
	3.1	SAMPLING AND SAMPLE PREPARATION	5
	3.2	CRUSHED CONCRETE	
	3.3	INCINERATOR BOTTOM ASH	6
	3.4	POROUS BASALT	
	3.4	LIGHTWEIGHT AGGREGATE	
	4.1	RESULTS FROM THE VACUUM TESTS	
	4.2	RESULTS FROM PARALLEL TESTING OF WATER SATURATION IN ATMOSPHERIC PRESSURE	
	4.3	RESULTS FROM BOILING AND COMPARISON OF CONDITIONING PROCEDURES BY PRE-DRYING	
	4.4 4.5	RESULTS OF LONG-TERM WATER ABSORPTION	
	4.5	COMPARISON OF DIFFERENT TEST PROCEDURES	
	4.7	MODELLING OF LONG-TERM WATER ABSORPTION IN A CONSTRUCTION	
_			
5	צוע	CUSSION	17
6	CO	NCLUSION	19
7	REJ	FERENCES	20
	API	PENDIX - LIST	
	1 (5)	PARTICLE SIZE DISTRIBUTION OF THE TESTED MATERIALS	
	2(1)	EXCERPT OF EN 1097-6	
	3 (16)	Pre-testing	
	4 (9)	PARALLEL TESTING	
	5 (5)	ADDITIONAL TESTS	
	6(1)	MODELLING OF FINAL WATER ABSORPTION AND UNIT WEIGHT OF LIGHTWEIGHT AGGREGATES	
		ACCORDING TO THE SWEDISH NATIONAL ROAD ADMINISTRATION	

Preface

Various national regulations in most European countries are introduced in order to facilitate the use of recycled aggregates, aggregates from secondary sources and others that can be termed as alternative aggregates compared to natural gravel and crushed rocks.

The European standardisation of Aggregates CEN TC 154 has focused its work on the standardised test methods suitable for natural aggregates. In order to have a fair competition between natural aggregates and alternative aggregates and, equally important, to get relevant data when testing alternative aggregates, SP has focused several projects on validation of test methods for such materials. This Nordtest project no. 1580-02, two other Nordtest projects (no. 1292-96 and 1393-97) and one national project co-financed by the Swedish Road Authority and SP have therefore been carried out in an attempt to give guidelines to the standardisation organisation.

The project has been carried out in collaboration with Petur Petursson from the Icelandic Building Research Institute (IBRI) and Joralf Aurstad from SINTEF, Norway.

The financial support from Nordtest is greatly appreciated.

Björn Schouenborg

Borås, November 2003

1 Introduction

A major trend, not only for aggregates, is the ever increasing awareness of our nature's sensitivity and demands. Some countries have been forced to act due to the simple fact that there is an actual shortage in natural aggregate resources. In other cases, the demands from society require a change towards a more sustainable production and consumption. Significantly increased deposition taxes work in the same way; "everything shall be used and re-used". Alternative aggregate materials and a more "efficient" use of existing deposits may be part of the solution.

In 1999, the Swedish Parliament adopted 15 environmental quality objectives, describing what state of the Swedish environment is sustainable in the long term. Also, about 70 interim targets have been adopted by Parliament. One of them, "a good built environment" stipulates that the amount of waste directed to landfill should be decreased by 50% from 1994 to 2005. This environmental objective also includes a goal saying that recycled aggregates should reach a level of 15% of all ballast by the year 2010. Also, landfill will become increasingly expensive due to the stricter demands on landfill sites stipulated by the Council Directive 1999/31/EC of 26 April 1999.

This has attracted a lot of interest from the producers of waste materials which might be suitable as aggregates. For example, Värmeforsk (Thermal Engineering Research Institute) in Sweden has launched a research and development program focused on recycling of ash for a variety of purposes, such as road construction material or concrete. To ensure a satisfying function, the materials have to be tested and compared to the demands appropriate for different applications. Currently, SP runs a project for assessment of quality criteria for ash for road construction and civil engineering purposes. Certification rules are being developed for blast furnace slag and steel slag. The use of adequate methods is crucial in this work.

An ad hoc group was formed under TC 154 to deal with Recycled Aggregates. The outcome was a technical report giving guidance on the most suitable properties to verify on such materials [1]. However, it only makes reference to standardised test methods. The properties and performance of recycled aggregates and aggregates from secondary sources have traditionally been assessed by use of standardised test methods for natural aggregates. However, it has repeatedly been demonstrated that most standardised test methods are not suitable for other materials [2, 3, 4 & 5].

The present study has focused on how to test the water absorption of highly porous aggregates, natural and alternative. It has been anticipated that such material will continue to soak water for a very long time, in some cases more than one year! The present European standard EN 1097-6 [6] is therefore not suitable for production control.

2 Test methods, equipment and scheme

2.1 European standard

EN 1097-6 Determination of particle density and water absorption is divided into the following different parts:

- Pyknometer method for aggregate particles between 0,063 and 4 mm
- Pyknometer method for aggregate particles between 4 and 31,5 mm
- Wire-basket method for aggregate particles between 31,5 and 63 mm

This project has focused on materials with particles between 4 and 31,5 mm. Both the pyknometer and the wire basket procedure have been executed. The wire basket procedure has been used for the long-term water absorption.

2.2 Standard water absorption test by use of Pyknometer

According to the standard method (in short), the material shall be immersed in water in a pyknometer for 24 hours at a temperature of 22 °C. The material is then surface-dried, and water absorption and particle density can be calculated following the described procedure.

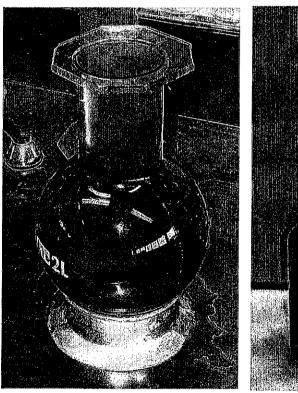


Figure 2.1. Examples of glass pyknometers used in the project.

2.3 Vacuum treatment

In order to see whether it was possible to develop a quick method, the materials were allowed to absorb water in different vacuum; 30, 50 and 75 mbar.

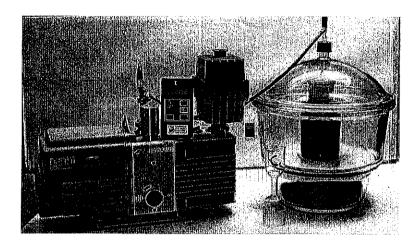


Figure 2.2. Photo of the vacuum enhanced water absorption equipment used at SP.

2.4 Boiling

Looking for another "quick procedure", boiling of the materials was also tried out. Perforated metal baskets and a big electronic boiling pot (figure 2.3) were used for boiling the materials for 1, 8 and 24 hours respectively.

Boiling was only performed on the crushed concrete and the porous basalt. The procedure revealed some problems; the surface dried measurements were rather difficult (the hot samples dried off very quickly) and some disintegration of the materials could be observed.

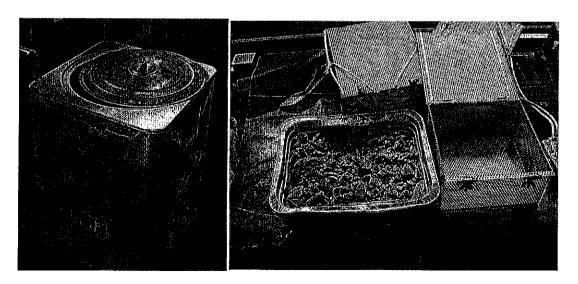


Figure 2.3. The old boiler at the IBRI to the left and the prepared sample to the right.

2.5 Long term saturation

In order to study the long term water absorption, the wire basket procedure was used (figure 2.4). Here the materials were kept in the containers, hanging in the semi-permeable bags, and the weight increase was monitored for a period of 300 days.

The densities and absorptions obtained after this period are likely to be comparable to the "real" material properties under field conditions.

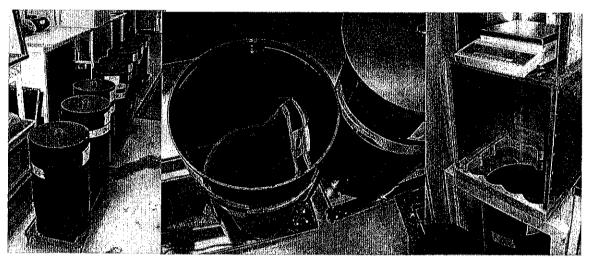


Figure 2.4. Photos of the containers for long term water absorption, the semi-permeable bags containing the test materials and the weighing in water.

2.6 Test scheme

A number of pre-tests were performed in order to determine the best test procedure for the parallel testing. SP therefore evaluated tests performed under different vacuum (75, 50 and 30 mbar) and time (1, 5 and 24 hours) for the absorption.

IBRI evaluated the influence of pre-drying compared to having the materials absorb water in a "natural" moist condition as they were received at the laboratories. IBRI also evaluated whether boiling could be a suitable quick method.

When the best test procedure had been determined all three laboratories performed tests on concrete, ash and basalt according to the same modified test procedure as a small intercomparison test.

SP was responsible for the long-term water absorption which was performed to have a more realistic estimate of the maximum possible absorption that can take place in a construction.

SP also performed additional tests on lightweight aggregates for comparison reasons and SINTEF performed additional tests on crushed bricks.

3 Sampling, materials and sample preparation

3.1 Sampling and sample preparation

The materials chosen for this project have been studied in other projects for other properties. They represent the most commonly used highly porous natural, "artificial" and alternative aggregates. Previous research projects have shown that highly porous materials may need special attention when testing.

Only coarse aggregates were used in this study. Particles smaller than 4 mm were discarded by sieving. Fine material is treated with a different procedure in the standard.

All materials were shipped to SP for homogenization and sample splitting by use of rotary divider (see figure 3.1).

The particle size distribution was determined in accordance with the guidance in Nordtest project no. 1292-96 [2]. The curves are displayed in Appendix 1.

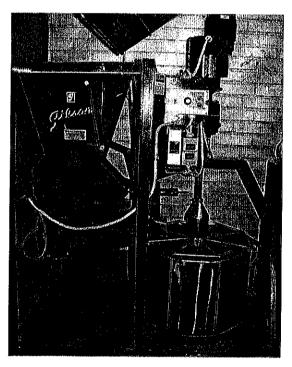


Figure 3.1. Sample splitting in a rotary sample divider

3.2 Crushed concrete

The Icelandic crushed concrete was sampled from a single building site, where a concrete house was being demolished and removed. Further information about the material can be obtained from the published report [7].

Crushed concrete is one of the few recycled materials that are commonly used for construction and civil engineering purposes. Swedish regulations have e.g. been developed for the use of crushed concrete when making new concrete [8].

3.3 Incinerator bottom ash

Incinerator bottom ash from coal combustion was sampled at Sydkraft Öst, Händelöverket in Norrköping.

Ash of this type has been used for several construction purposes during the 1990s in the area around Norrköping [9]. The most important project was the construction of subbases for a highway around Norrköping. In this case the material was used as a replacement for lightweight aggregates, which saved both natural resources and landfill space. During the first 10 years of the construction, there have been no indications that the material does not fulfil its function.

3.4 Porous basalt

The porous basalt is a fresh pillow lava formation and was sampled by IBRI in Iceland, see figure 3.2. The material is generally used for unbound basecourse and as aggregate for concrete purposes. It has been used in many previous projects for the Icelandic Aggregate Committee in the years 1985 to 1994 [10] and for the BUSL co-operation in the years 1995 to 2000 [11].

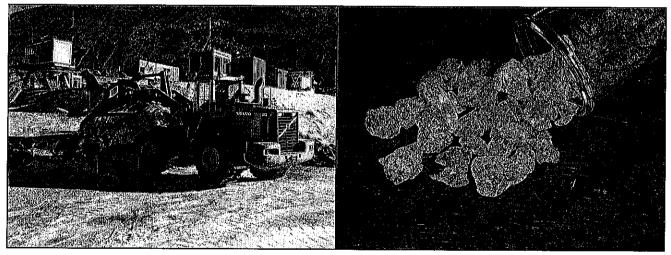


Figure 3.2. Sampling of the porous basalt (left). Prepared and dried basalt sample (right).

3.4 Lightweight aggregate

Lightweight aggregate came from LECA and was sampled in combination with the yearly 3rd party inspection connected with the factory production control.

The reason for choosing this lightweight material is because it has many properties in common with porous recycled aggregates. However, it is manufactured in short gradings that can't be directly compared with the long gradings of ash and crushed concrete.

The grading chosen for this project was 12-20 mm. One of the more common applications as a load compensating material in civil engineering works on unstable grounds.

4 Test results and discussions

4.1 Results from the vacuum tests

The vacuum tests were performed on crushed concrete, basalt and bottom ash. Three different pressures (75, 50 and 30 mbar) were used. The pyknometers were also left in the vacuum device for a different period of time (1, 5 and 24 hours).

Table 4.1. The results from testing at 3 different pressures.

(Wt-%)	75 mbar		50 mbar		30 mbar	
Water absorption bottom ash (31,5-4mm)	Mean	Std dev.	Mean	Std dev.	Mean	Std dev.
Water absorption (0h)	25,1	1,00	36,1	1,24	35,41	0,65
Water absorption (1h)	36,7	1,22	37,4	0,94	36,58	0,57
Water absorption (5h)	37,0	1,18	37,5	0,99	36,58	0,65
Water absorption (24h)	37,2	1,26	37,5	0,70	36,44	0,82
Water absorption Conrete (25-4mm)						
Water absorption (0h)	8,32	0,18	8,41	0,25	8,44	0,14
Water absorption (1h)	8,74	0,25	8,41	0,28	8,43	0,17
Water absorption (5h)	8,67	0,23	8,38	0,25	8,45	0,15
Water absorption (24h)	8,61	0,23	8,59	0,13	8,43	1,10
Water absorption Basalt (31,5-4mm)						
Water absorption (0h)	2,53	0,06	5,27	0,09	5,87	0,14
Water absorption (1h)	4,65	0,31	5,68	0,05	6,14	0,25
Water absorption (5h)	4,65	0,31	5,68	0,05	6,14	0,25
Water absorption (24h)	5,57	0,06	6,27	0,04	6,41	0,17

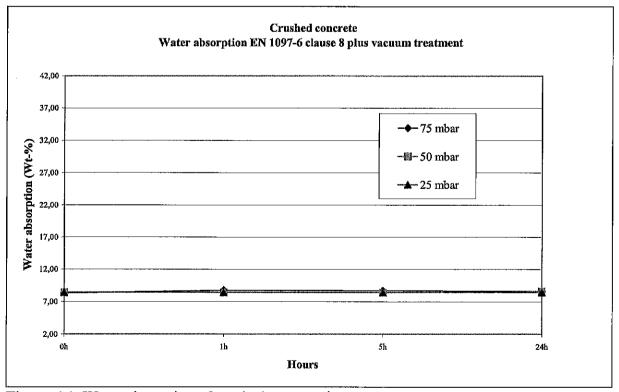


Figure 4.1. Water absorption of crushed concrete in vacuum

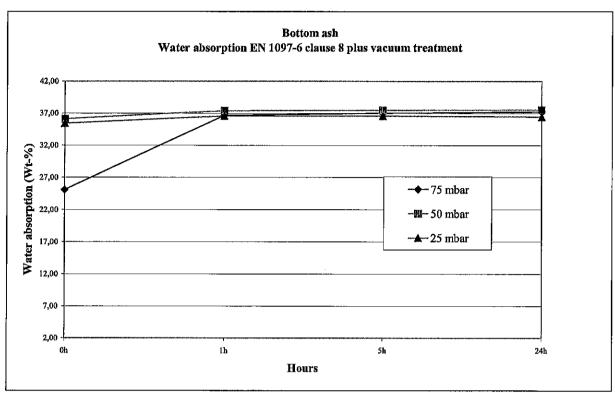


Figure 4.2. Water absorption of bottom ash in vacuum

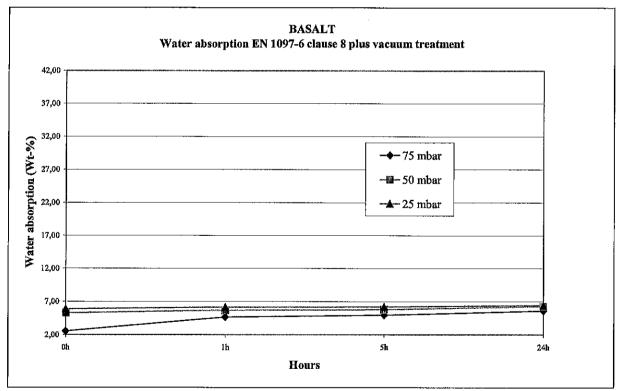


Figure 4.3. Water absorption of porous basalt in vacuum

4.2 Results from parallel testing of water saturation in atmospheric pressure

After the evaluation of the pre-test at SP concerning the vacuum procedure it was decided to use 50 mbar for 5 hours. The parallel testing was performed on Basalt, Incinerator ash and Crushed concrete. The results are displayed in the tables below.

Table 4.2. Results from parallel testing at the three laboratories – Crushed concrete

			Concrete	(4mm - 31,5 mm))
		Particle	density (M	(g/m3)	Water absorption
Lab.	Number of	Apparent	On an oven	On a saturated and	Water abs.
	samples		dried basis	surface-dried basis	(weight-%)
SP	1	2,902	2,398	2,572	7,24
	2	2,886	2,354	2,539	7,82
	3	2,891	2,366	2,547	7,68
-	Mean (within)	2,89	2,37	2,55	7,6
	Stdav.(within)	0,008	0,023	0,017	0,30
SINTEF	2	2,880	2,351 2,365	2,535 2,549	7,82 7,80
	Mean (within)	2,89	2,36	2,54	7,8
	Stdav.(within)	0,014	0,010	0,010	0,01
IS	1	2,923	2,403	2,581	7,40
IS	1 2	2,923 3,958	2,403 2,994	2,581 3,237	7,40 8,14
IS	1 2 Mean (within)				-
IS		3,958	2,994	3,237	8,14
IS	Mean (within)	3,958 3,44	2,994 2,70	3,237 2,91	8,14 7,8

Table 4.3. Results from parallel testing at the three laboratories – Bottom ash.

				hree laboratories - sh (4mm - 31,5 m	
		Particle	density (M	1	Water absorption
Lab.	Number of samples	Apparent	On an oven dried basis	On a saturated and surface-dried basis	Water abs.
SP	1	1,843	1,135	1,519	33,86
	2	1,884	1,171	1,550	32,32
	3	1,858	1,135	1,524	34,30
	Mean (within)	1,86	1,15	1,53	33,5
	Stdav.(within)	0,021	0,021	0,017	1,04
SINTEF	B.ash 11 1	1,880	1,130	1,529	35,33
	B.ash 11 2	1,922	1,143	1,548	35,42
	Mean (within)	1,90	1,14	1,54	35,4
	Mean (within) Stdav.(within)	1,90 0,030	1,14 0,010	1,54 0,014	35,4 0,06
S	Mean (within) Stdav.(within)	1,90 0,030	1,14 0,010	1,54 0,014	35,4 0,06
S	Mean (within) Stdav.(within) 5/9 2003 1 5/9 2003 2	1,90 0,030 1,862 1,858	1,14 0,010 1,141 1,153	1,54 0,014 1,528 1,532	35,4 0,06 33,91 32,91
S	Mean (within) Stdav.(within) 5/9 2003 1 5/9 2003 2 Mean (within)	1,90 0,030 1,862 1,858 1,86	1,14 0,010 1,141 1,153 1,15	1,54 0,014 1,528 1,532 1,53	35,4 0,06
S	Mean (within) Stdav.(within) 5/9 2003 1 5/9 2003 2	1,90 0,030 1,862 1,858	1,14 0,010 1,141 1,153	1,54 0,014 1,528 1,532	35,4 0,06 33,91 32,91
IS	Mean (within) Stdav.(within) 5/9 2003 1 5/9 2003 2 Mean (within)	1,90 0,030 1,862 1,858 1,86	1,14 0,010 1,141 1,153 1,15	1,54 0,014 1,528 1,532 1,53	35,4 0,06 33,91 32,91 33,4

Table 4.4. Results from parallel testing at the three laboratories — Porous basalt.

			BASALT	(4mm - 31,5 mm)
		Particle	density (M	Ig/m3)	Water absorption
Lab.	Number of	Apparent	On an oven	On a saturated and	Water abs.
	samples		dried basis	surface-dried basis	(weight-%)
SP	1	2,713	2,390	2,509	4,98
	2	2,700	2,381	2,500	4,96
	3	2,706	2,359	2,487	5,43
	Mean (within)	2,71	2,38	2,50	5,1
	Stdav.(within)	0,007	0,016	0,011	0,27
SINTEF	2	2,721 2,717	2,434 2,438	2,540 2,541	4,32
	Mean (within)	2,72	2,44	2,54	4,3
	Stdav.(within)	0,003	0,003	0,001	0,07
IS	1	2,737	2,412	2,531	4,93
	2	2,604	2,320	2,429	4,70
	Mean (within)	2,67	2,37	2,48	4,8
	Stdav.(within)	0,094	0,065	0,072	0,16
			T	1	· · · · · · · · · · · · · · · · · · ·
Total	Mean (between)	2,70	2,39	2,51	4,7

4.3 Results from boiling and comparison of conditioning procedures by pre-drying

Testing on materials after pre-drying or in an "as received" state is often argued. Table 4.7 shows results from RB, where samples were tested oven dried at 105 °C on the one hand and not oven dried, but conditioned at 40°C for 120 hours, on the other hand. The table clearly displays that there is a considerable difference in the results obtained from these two procedures. In all cases, the oven dried samples do not reach the same water absorption as the samples that were not oven dried.

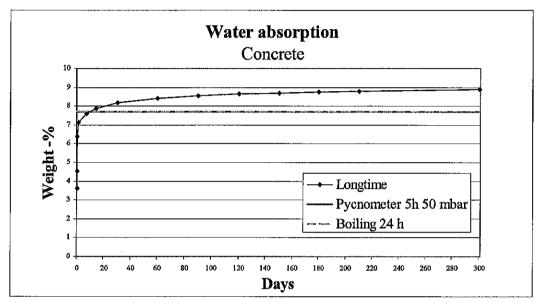
Table 4.5 Difference in water absorption of oven dried and not oven dried samples.

				BOILING	j		
	Oven dry	1 hour, g	%	8 hour	%	24 hours	%
Porous basalt					•		
Oven dried	1957,8	2031,2	3,75	2037,1	4,05	2050,4	4,73
Not oven dried	1913,3	1996,1	4,33	2005,2	4,80	2018,5	5,50
Crushed concrete							
Oven dried	1721,2	1843,3	7,09	1847,9	7,36	1849,9	7,48
Not oven dried	1739,0	1865,4	7,27	1871,5	7,62	1872,3	7,67
Bottom ash					•	•	- "
Oven dried	1090	1401,9	28,61	1454,5	33,44	1456,8	33,65
Not oven dried	1340,7	1781,4	32,87	1808	34,85	1796,2	33,97

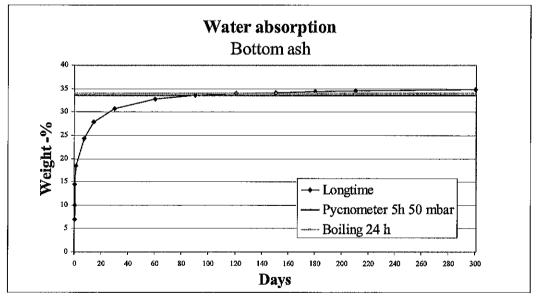
4.4 Results of long-term water absorption

The materials were weighed at regular intervals, more frequently at the beginning of the test period. All results are displayed in Appendix xx. Table 4.6 displays a summary of the time for the materials to be completely saturated, except for the lightweight aggregate.

A comparison between long-term test and vacuum treatment is displayed in section 4.5.


Table 4.6. Accumulated, relative wt % of the maximum water absorption

(set to 100 %) after a defined period of time


	Basalt		Light wei	ght aggregate	Bottom a	sh	Concrete	
Days	W %	Accumulative	W %	Accumulative	W %	Accumulative	W %	Accumulative
0	1,4	17,9	0	2,1	6,9	19,9	3,63	40,8
0,003	1,7	21,6	0,003	3,72	10,0	28,6	4,53	50,9
0,083	2,1	26,2	0,083	8,06	14,5	41,6	6,40	71,9
1	2,5	31,3	1	12,7	18,5	53,1	7,13	80,1
7	3,4	42,9	7	22,0	24,3	69,8	7,61	85,5
14	4,3	53,4	14	30,5	27,8	79,9	7,88	88,6
30	5,4	67,0	30	40,1	30,8	88,4	8,18	91,9
60	6,2	78,1	60	47,9	32,7	94,1	8,40	94,4
90	6,8	85,5	90	56,9	33,6	96,4	8,55	96,1
120	7,2	89,8	120	61,5	34,0	97,6	8,64	97,1
150	7,4	92,4	150	64,7	34,2	98,2	8,68	97,6
180	7,6	94,4	180	65,2	34,4	98,8	8,74	98,2
210	7,7	96,8	210	68,5	34,5	99,2	8,78	98,7
300	8,0	100,0	300	77,4	34,8	100,0	8,90	100,0

4.5 Comparison of different test procedures

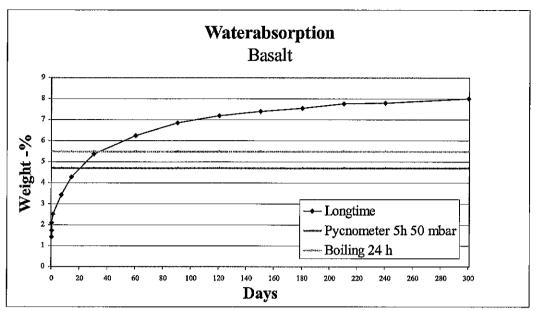

In order to try to find a quick test usable for production control, both boiling and vacuum were used. The results from these tests are compared with the long-term absorption in the diagrams below (figures 4.4 - 4.7).

Figure 4.4. Comparison between long-term water absorption and quick tests by vacuum and boiling – Crushed concrete

Figure 4.5. Comparison between long-term water absorption and quick tests by vacuum and boiling – Bottom ash.

Figure 4.6. Comparison between long-term water absorption and quick tests by vacuum and boiling – Porous basalt

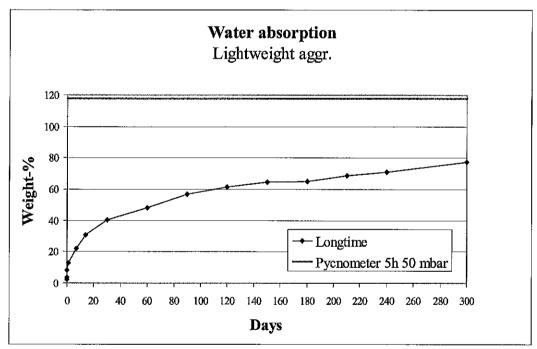


Figure 4.7. Comparison between long-term water absorption and quick tests by vacuum and boiling – Lightweight aggregate.

4.6 Complementary test results from other materials

Table 4.7 below displays a compilation of results from water saturation in 50 mbar vacuum of the "project" materials and other materials for comparison.

Table 4.7. Water absorption of the project materials and other common RAC and one

reference gravel

GRANITE	Test portion	Test portion	Tost postion	Avorogo
Particle density and water absorption	rest portion a	test portion b	Test portion	Average
Water absorption. (weight-%)	1,24	1,12	c 1,20	1,19
Particle density on an oven dried basis . (Mg/m3)	2,57	2,58	2,58	2,58
Particle density on a saturated and	2,57	2,36	2,56	2,30
surface-dried basis . (Mg/m3)	2,60	2,61	2,61	2,61
POROUS BASALT	2,00	2,01	2,01	2,01
Particle density and water absorption				
Water absorption. (weight-%)	4,98	4,96	5,43	5,12
Particle density on an oven dried basis . (Mg/m3)	2,39	2,38	2,36	2,39
Particle density on a saturated and	2,39	2,30	2,30	4,39
surface-dried basis . (Mg/m3)	2.51	2.50	2.40	2.50
BLAST FURNACE SLAG	2,51	2,50	2,49	2,50
Particle density and water absorption Water absorption.(weight-%)	4,93	4,94	5 60	£ 1.6
Particle density on an oven dried basis . (Mg/m3)	•	•	5,62	5,16 2,42
Particle density on an oven dried basis . (Mg/m3) Particle density on a saturated and	2,42	2,42	2,38	2,42
surface-dried basis . (Mg/m3)	2.52	2.54	2.51	2 52
LIGHT WEIGHT AGGREGATE	2,53	2,54	2,51	2,53
Particle density and water absorption	100	115	117	148
Water absorption.(weight-%)	120	115	117	117
Particle density on an oven dried basis . (Mg/m3)	0,42	0,42	0,41	0,42
Particle density on a saturated and	0.02	0.01	0.00	Λ.01
surface-dried basis . (Mg/m3)	0,93	0,91	0,89	0,91
CRUSHED CONCRETE				
Particle density and water absorption	77.04	7.00	71.70	# #O
Water absorption.(weight-%)	7,24	7,82	7,68	7,58
Particle density on an oven dried basis . (Mg/m3)	2,40	2,35	2,37	2,38
Particle density on a saturated and	0.57	0.54	0.55	0.55
surface-dried basis . (Mg/m3)	2,57	2,54	2,55	2,55
BOTTOM ASH				
Particle density and water absorption	** ^	9.5.5		
Water absorption.(weight-%)	33,9	32,3	34,3	33,5
Particle density on an oven dried basis . (Mg/m3)	1,13	1,17	1,13	1,15
Particle density on a saturated and		.		
surface-dried basis . (Mg/m3)	1,52	1,55	1,52	1,53
CRUSHED BRICKS				
Particle density and water absorption				
Water absorption.(weight-%)	21,5	22,6		22,0
Particle density on an oven dried basis . (Mg/m3)	1,70	1,66		1,68
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	2,07	2,04		2,05

4.7 Modelling of long-term water absorption in a construction

The Swedish National Road Administration (SNRA) is currently using a mathematical model for prediction of the long-term water absorption and unit weight of lightweight aggregates [12].

The model also considers whether the material is used above or below the ground water level and the unit weight can be calculated for both cases.

The obtained relative moisture content after 300 days totally submerged in water in the laboratory was approximately 117 %. According to the model, this content corresponds to 14 years in the construction (see figure 4.8).

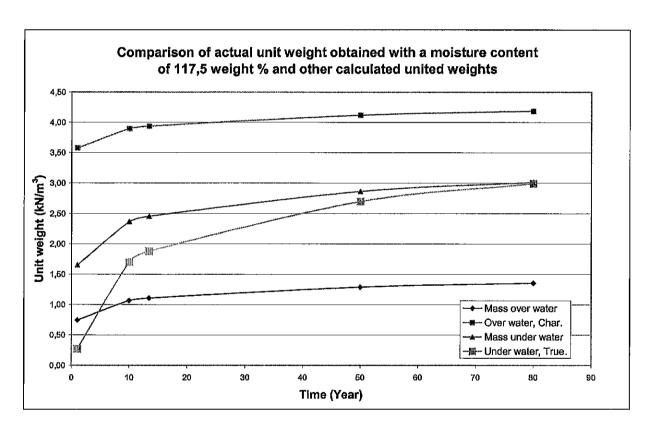


Figure 4.8. The test results obtained after 300 days have been used to calculate the unit weight after a certain period of time in a construction above and below the ground water level.

Table 4.7 shows the data obtained from the long term water absorption of lightweight aggregate. The grey coloured data are omitted in figure 4.9 since they destroy the possibility to extrapolate the water absorption over the years. The yellow coloured data is the extrapolated water absorption up to 40 years which is the service life of a road according to SNRA.

Table 4.7. Long term water absorption and calculated after one year (ca. 300 days).

Days	0	0,00	0,08	. 1	7	14	30	60	90	120	150	180	210	240	300	1000	2000	3000	4745	5000	10000	14600
W-abs	2,1	3,72	8,06	12,68	22,02	30,50	40,13	47,94	56,90	61,46	64,67	65,22	68,54	70,84	77,40	92	103	109	116	116	127	132

The point in making these calculations and showing the diagrams (4.9 and 4.10) is to find out Whether the pattern observed for the other materials is repeated also for lightweight aggregates and also to evaluate whether the mathematical model of SNRA gives relevant results.

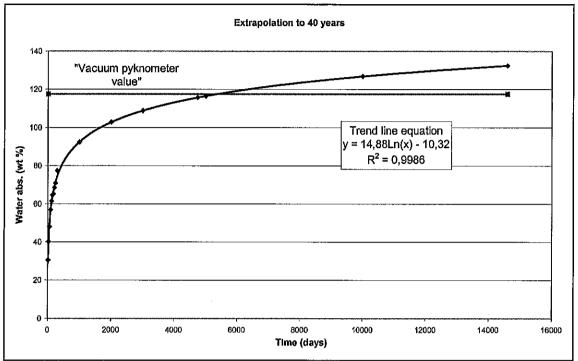


Figure 4.9. Best fit curve for the data between 14 days and 300 days is used for extrapolating up to 40 years.

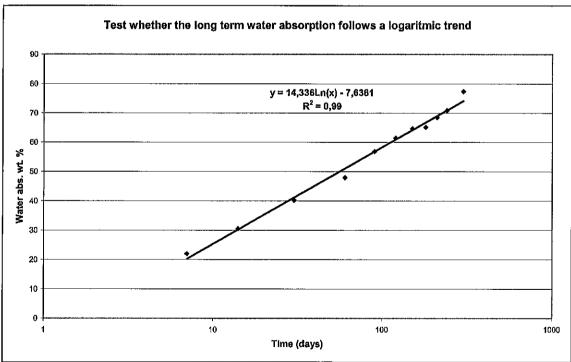


Figure 4.10. Evaluation, whether the water absorption data follows a logaritmic development.

5 Discussion

The pre tests were performed in order to determine the most relevant and efficient tests and material to continue with in the project. The pre-test included testing the water absorption by use of a vacuum method with different pressure and different period of time. The conclusion was that a vacuum of 50 mbar for 5 hours is sufficient. After this time, the change was very small compared to the final absorption. The subsequent parallel testing was carried out in accordance with these recommendations.

The coefficient of variation, between laboratories, when the overall mean is compared with the pooled standard deviation, is between 2,1 and 4,5 %. This is considered to be very good, especially with materials as heterogeneous as these. The repeatability can be expressed in terms of coefficient of variation within the laboratories. This value is between 0,01 and 6,7 %. The prerequisite for obtaining such a good precision is the use of an efficient sample division, good test instructions and careful operation by the laboratory personnel. By use of a rotary sample divider it has been possible to produce tests samples that are very alike.

Pre-testing of boiling pre-dried versus non-conditioned samples was also undertaken. The results from the pre-drying procedure clearly indicate that the water absorption is lowered if the material is pre-dried. In other words, it is more difficult to fill all available pores with water once the material has been completely dried out. Since the test procedure is slowed down due to the pre-drying it's relevance can be questioned.

During the boiling procedure some material was disintegrated. It was also rather difficult to measure the saturated surface dry samples as the samples dried very quickly due to their high temperature. Both these problems led to the conclusion not to continue with either pre-drying or boiling and that the boiling procedure was too laborious and contained too many uncertainties to be recommended.

It has been shown that most of the porous materials absorb water for a very long time. It was therefore decided to develop and use a long-term test method as reference for the quick methods. SP has successfully used the same type of semi-permeable bags/baskets for this kind of test in a previous project [5]. The project materials and light-weight aggregate (LECA) were included in this test. There was no problem encountered during the test period of 300 days. The bags work very well and can probably be used for particle sizes down to about 1 or 2 mm. It is important to lightly shake the bags before weighing them since air bubbles tend to stick to the bags and also some of the aggregate particles. The only drawback is that the bags and their containers take up a lot of space.

In commission work SP has also tried to use the same type of pyknometer as were used in this project. In resent CEN enquiry concerning the lightweight test procedure SP has proposed to use the glass pyknometer also for the long-term test. One argument in favour of this equipment is that they don't require the same amount of space as the bags and containers. Another strong argument is the very good precision obtained in this Nordtest project.

EN 1097-6 Annex C (normative): "Determination of water absorption and density of light-weight aggregates", includes NOTE no. 2, stating that "The operation can also be carried out at other times (2 h and 7 days are examples to suit the end users for the aggregate)". NOTE 3 states that 24 hours is sufficient for most tests. The project results clearly show that all tested materials need at least 3 months to be close to a steady-state. Steady-state, in this case, can be interpreted as the best estimate of the maximum obtainable water absorption in a construction.

All materials except lightweight aggregate absorbed water to a steady state. The lightweight aggregate still had an "absorbing trend" after 300 days. The mathematical model by the SNRA indicates that the results obtained by the vacuum method correspond to approximately 13 years in the construction. To test whether an extrapolation based on the water absorption data coincides with the SNRA model a best fit logarithmic curve was used. The expected water absorption from this extrapolation indicated that the same water absorption is reached after 14 years which may be considered as a rather good correspondence.

The unit weight can be calculated and expressed either as the weight above or below the ground water level. It is possible to compare the total pore volume with the water absorption by vacuum and see whether the pores have been totally or partially filled with water. To be able to do this it is necessary first to determine the apparent volume of the particles and then pulverise them and determine the true volume of the material (volume of the solid part). However, this is outside the scope of the project.

The results for bottom ash were those that corresponded best with the vacuum and boiling measurements. The long-term water absorption of the crushed concrete was approximately 1 % (absolute) higher compared to boiling and vacuum. The long-term absorption of the porous basalt was similarly higher than the absorption by boiling and vacuum. The difference is even bigger in the latter case. Finally, the long-term water absorption of the lightweight aggregate was substantially lower than the vacuum absorption. However, the data modelling performed in accordance with SNRA regulations indicates that also lightweight aggregates have a lower absorption by vacuum than the extrapolated long-term absorption.

The differences in behaviour clearly indicate the problem of developing one unique test method applicable for all alternative aggregates. The differences are most likely due to a different permeability and pore structure of the materials.

The difference in results between water absorption for 24 hours in atmospheric pressure compared to the long-term absorption indicate that the prescribed conditioning of test samples for other tests such as frost resistance and compaction before tri-axial dynamic strength testing is insufficient and should be changed. This may have a strong influence on the relevance of the results from such tests due to the fact that the open pore volume may be only partially filled.

A possible continuation would be to focus on each material separately and evaluate if the vacuum method can be used for several different types of incinerator ashes and if there is a similar relation between most crushed concrete materials as this one. One must remember that the variation in aggregates from secondary sources is very large and that test results obtained in this project apply only to the tested material and it has not been proven that the tested material is fully representative of all varieties.

6 Conclusion

The major aim of the project was to evaluate whether the existing European standard for determination of water absorption of aggregate is suitable for testing porous alternative aggregates. Another aim was to try to develop an alternative quick test.

It has clearly been demonstrated that EN 1097-6 is unsuitable for such materials and that a different test method has to be developed if relevant test results shall be achieved.

It has also been demonstrated that pre-drying of the test materials is unnecessarily laborious and does not give reliable results. The importance of the difference between results obtained by pre-drying and testing the materials "as received" has to be assessed on a case-by-case basis.

Absorption by use of boiling may be a possible alternative quick method for some materials that will not disintegrate during the test. However, the method presents some other problems and can therefore not be recommended as a general test method suitable for all materials.

The results of the long-term water absorption demonstrate that Annex C of the standard substantially underestimates the time needed to reach a steady-state and achieve relevant data for the water absorption of lightweight aggregates and alternative aggregates. Bottom ash and crushed concrete need approximately three months to reach steady-state. Lightweight aggregate and porous basalt need more than one year! The SNRA mathematical model provides a relevant extrapolation that may be possible to use also for other alternative materials.

The chosen quick test by vacuum enhanced absorption has proven to give repeatable and reproducible results for each material. The best correspondence between the vacuum method and the long-term method was obtained on crushed concrete and bottom ash. However, the vacuum method can not be recommended as a general method for all materials without additional research.

Vacuum enhanced absorption may also be possible to use for conditioning of samples for other tests where the materials are tested in a wet condition.

Future research should therefore focus on validation of the vacuum procedure by testing several types of e.g. incinerator ashes, crushed concrete etc. In addition, the pore structure and permeability should be determined to be able to find the mechanism by which the pores are filled with water. One should also perform direct frost resistance tests and tests of other properties where the conditioning included water absorption and compare the results from vacuum enhanced absorption with the results on samples conditioned for 24 h hours in water.

7 References

- [1] CENT C 154 Ad hoc Recycled aggregates, Technical report.
- [2] STENBERG, Fredrik & SCHOUENBORG, Björn, Provningsmetoder anpassade för återvinningsprodukter Kornstorleksfördelning. SP RAPPORT 1997:08
- [3] Ewertson, C., Schouenborg, B. & Aurstad J.: Provningsmetoder andpassade för återvinningsprodukter, del 2- Sprödhet *Nordtest Technical Report* 440 SP RAPPORT: 2000:14
- [4] Schouenborg, B. Provningsmetoder för alternativa material. Januari 1998. Nordiska ballastforskarseminariet i Oslo. Proceedings
- [5] Schouenborg, B., Arm, M., Carling, M. & Andersson, H.: Provningsmetoder för alternativa material till vägunderbyggnad Undersökning av rostereldad kolbottenaska, slaggrus och krossad betong. Vägverket, Publikation 2001:34, ISSN 1401-9612
- [6] EN 1097-6: Tests for mechanical and physical properties of aggregates Part 6: Determination of particle density and water absorption.
- [7] B.J. Wigum, Th. Hólmgeirsdóttir, E.L. Sveinsdóttir, H. Hauksson og G. Jónsson, H. Jónsdóttir, A. Jóhannsson og B. Skúladóttir 2002: Byggingarúrgangur á Íslandi gagnagrunnur og umhverfismat. Hluti II og III:Endurunnin steypa úrgangur eða nýtt hráefni? (in Icelandic) Rbreport no. 02-12, Reykjavík
- [8] Återvunna byggnadsmaterial. BÅ99, Boverkets handbok om användning av återvunna byggnadsmaterial. 1999
- [9] Hindersson A, Statusrapport över hantering och nyttiggörande av kol- och blandaskor, Värmeforskrapport 620, Miljö- och förbränningsteknik, november 1997
- [10] Pétur Pétursson (ed.) 1994: Proceedings of the Icelandic Aggregate Committee symposium (in English). Distributed by the Icelandic Building Research Institute, Reykjavík.
- [11] Hreinn Haraldsson (ed.) 2001: Lokaráðstefna BUSL. Proceedings of the BUSL symposium (in Icelandic) Distributed by the Public Roads Administration, Reykjavík
- [12] Allmän teknisk beskrivning. Lättklinker i vägkonstruktioner. Vägverkets Publikation 2003:1 (in Swedish). Requirement son the use of lightweight aggregates in road constructions by SNRA

8 APPENDIX - list

1 (5) Particle size distribution of the tested materials

2 (1) Excerpt of EN 1097-6

The scope from the standard

EN 1097-6 Annex C (normative) Determination of water absorption and density of light- weight aggregates

3 (16) Pre-testing

SP Vacuum test, 75, 50, 30 mbar and 1, 5 and 24 hours IBRI atmospheric pressure, pre-drying and boiling

4 (9) Parallel testing

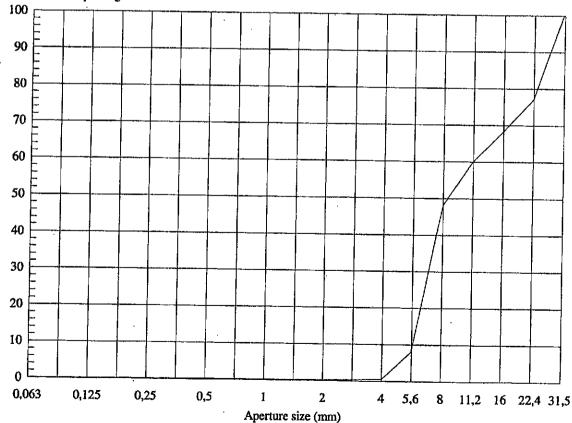
SP, IBRI, SINTEF: 50 mbar and 5 hours (concrete, ash and basalt)

5 (5) Additional tests

Long term water absorption Other materials for comparison (lightweight aggregates, granite, blast furnace slag and crushed bricks)

6 (1) Modelling of final water absorption and unit weight of lightweight aggregates according to the Swedish National Road Administration

Reference: Appendix 1.1 Sample marking: Granite


Particle size distribution

Aperture	Mass (g)	Mass (%)	Cumulative % p	passing
size	Testspecimen	Testspecimen	Testspecimen	Average
(mm)	1 2	1 2	1 2	
31,5	0,00	0,00	100,00	100,0
22,4	501,70	22,97	77,03	77,0
16	187,90	8,60	68,43	68,4
11,2	184,70	8,45	59,98	60,0
8	254,80	11,66	48,32	48.3
5,6	883,60	40,45	7,87	7,9
4	161,20	7,38	0,49	0,5
2	5,80	0,27	0,22	0,2
1	0,60	0,03	0.20	0,2
0,5	0,60	0,03	0,17	0,2
0,25	0,60	0,03	0,14	0,1
0,125	0,70	0,03	0,11	0,1
0,063	0,70	0.03	0,08	0,1
Pan	1,70	0,08	0,00	3,1

100,00

Sum: 2184,60
Tot dry mass: 2184,50
Loss: -0,10

Cumulative % passing

Reference: Appendix 1.2 Sample marking: Crushed concrete

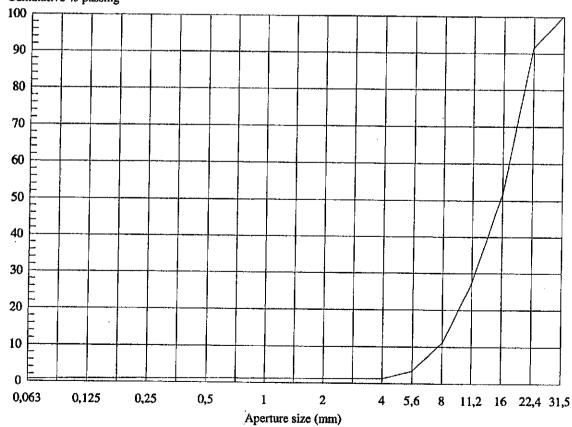
Particle size distribution

Aperture	Mass (g)	J	Mass (%)			ive % passing
size	Testspec		Testspe		Testspec	cimen Average
(mm)	1	2	1	2	1	2
31,5	0,00		0,00		100,00	100,0
22,4	561,00		22,64		77,36	77,4
16	591,20		23,86		53,50	53,5
11,2	543,20		21,92		31,58	31,6
8	348,60		14,07		17,51	17,5
5,6	296,40		11,96		5,55	5,6
4	108,30		4,37		1,18	1,2
2	3,30		0,13		1,05	1,0
1	2,40		0,10		0,95	0,9
0,5	2,60		0,10		0.84	0,8
0,25	3,20		0,13		0,71	0,7
0,125	4,40		0,18		0,54	0,5
0,063	4,30		0,17		0,36	. 0,4
Pan	9,00		0,36		,,,,,	. 0,1

100,00

Sum: 2477,90 Tot dry mass: 2479,00 Loss: 1,10

Reference: Appendix 1.3 Sample marking: Basalt

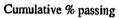

Particle size distribution

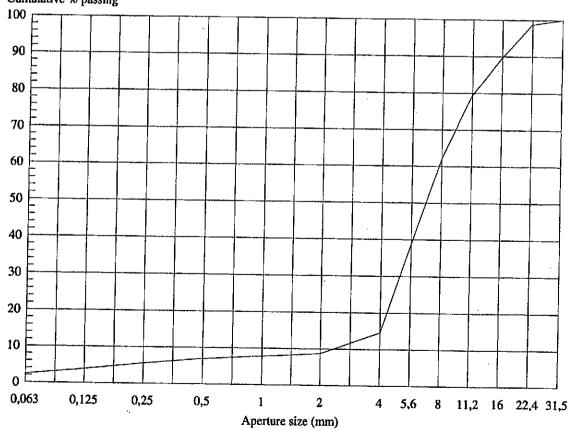
Aperture	Mass (g)		Mass (%)		Cumulat.	ive % pas	ssing
size	Testspec	imen	Testspec	cimen	Testspe		Average
(mm)	1	2	1	2	1	2	
31,5	0,00		0,00		100,00		100,0
22,4	223,50		8,52		91,48		91,5
16	1036,50		39,53		51,95		52,0
11,2	654,90		24,98		26,97		27,0
8	412,40		15,73		11,24		11,2
5,6	207,70		7,92		3,32		3,3
4	53,80		2,05		1,27		1,3
2	1,40		0,05		1,21		1,2
1	0,60		0,02		1,19		1,2
0,5	1,10		0,04		1,15		1,1
0,25	2,50		0,10		1,05		1,0
0,125	4,00		0,15		0,90		0,9
0,063	5,40		0,21		0,69		0.7
Pan	18,20		0,69		-,		~, .

100,00

Sum: 2622,00 Tot dry mass: 2624,10 Loss: 2,10

Cumulative % passing


Reference: Appendix 1.4 Sample marking: Bottom ash

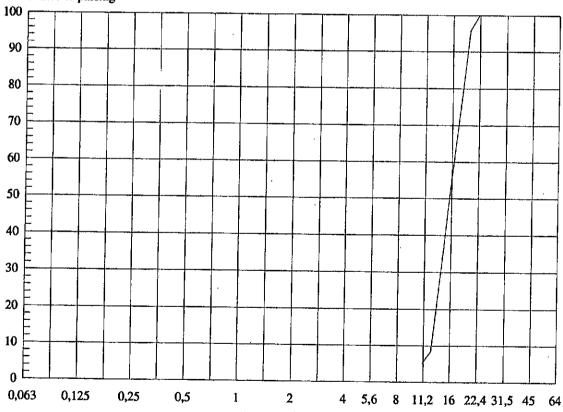

Particle size distribution

Aperture	Mass (g) Testspecimen		Mass (%) Testspecimen		Cumulative % passing		
size					Testspec		
(mm)	1	2	1	2	1	2	
31,5	0,00		0,00		100,00	100,0	
22,4	13,80		1,21		98,79	98,8	
16	103,20		9.04		89,75	89,8	
11,2	120,70		10,57		79,17	79,2	
8	193,20		16,93		62,25	62,3	
5,6	275,10		24,10		38,15	38,2	
4	268,20		23,50		14,65	14,6	
2	67,90		5,95		8,70	8,7	
1	10,60		0,93		7,77	7,8	
0,5	9,90		0,87		6,90	6,9	
0,25	15,90		1,39		5,51	5,5	
0,125	19,50		1,71		3,80	3,8	
0,063	16,20		1.42		2,38	2,4	
Pan	27,20		2,38		2,50	۵,4	

Sum: 1141,40 100,00

Tot dry mass: 1146,00 Loss: 4,60

Reference: Appendix 1.5 Sample marking: Light weight aggregate


Particle size distribution

Aperture size	Mass (g) Testspecimen		Mass (%) Testspecimen		Cumulative % passing Testspecimen Average		
(mm)	1	2	1	2	1	2	
22,4	0,00	0,00	0,00	0,00	100,00	100,00	100.0
20	17,90	14,60	4,64	3,74	95,36	96,26	95,8
16	151,60	164,90	39,29	42.21	56,07	54,06	55,1
12,5	188,90	173,60	48,96	44.43	7,10	9,62	8.4
11,2	10,40	15,20	2,70	3,89	4,41	5,73	5,1
Pan	17,00	22,40	4,41	5,73	-,	5,75	3,1

Sum: 385,80 390,70 100,00 100,00

Tot dry mass: 385,40 391,00 Loss: -0,40 0,30

Cumulative % passing

Excerpt of EN 1097-6

Scope

This European Standard specifies methods for the determination of the particle density and water absorption of aggregates. The first five methods are applicable to normal aggregates with a sixth method for lightweight aggregates.

The principal methods specified are:

- a) a <u>wire basket method</u> for aggregates passing a 63 mm sieve but retained on a 31.5 mm sieve:
- b) <u>pyknometer methods</u> for aggregates passing a 31.5 mm sieve but retained on a 0.063 mm sieve.
- **NOTE 1** The wire basket method may be used as an alternative to the pyknometer method for aggregates between 4 mm and 31.5 mm. In case of dispute, the pyknometer method described in clause 8 should be used as the reference method.
- **NOTE 2** The wire basket method can also be used for single aggregate particles retained on a 63 mm sieve.

A method for the determination of pre-dried particle density of dense aggregates is specified in annex A.

NOTE 3 As the absorption of dense aggregates is low, pre-dried particle density can be determined directly in water. This method is different to the determination of particle density on an oven dried basis.

A modified version of the wire-basket method suitable for determining the particle density and water absorption of coarse aggregates saturated to constant mass is specified in annex B.

For <u>lightweight aggregates</u>, a modified version of the pyknometer test specified in annex A is specified in annex C.

EN 1097-6 Annex C (normative)

Determination of water absorption and density of light- weight aggregates

NOTE 2 The operation can also be carried out at other times (2 h and 7 days are examples to suit the end users for the aggregate).

NOTE 3 For most tests Mw will be determined after 24 h.

Ex	panded 1	clay lig	htweight a	ggregate 12	-20 mm		APPEN	DIX 6
dNessenbookskinke/politike/ted	or provide to the contract of		***************************************	AND THE PROPERTY OF THE PROPER	in en	***************************************		
Unit we	ight in sh	lort and I	ong time acc	ording to BVH	585.11 och A	TB publication	n 2003:1	
Test s	ample		mm	Density	kg/m³	kN/m ³	Unit weight	(kN/m ³)
Grain	size mii	1	12	ρ comp	2650		$\mathbf{W}_{\mathbf{Y}}$	0,30
Grain	size ma	X	20	P bulk (loose)	230	2,3	W _{A,char}	4,19
Mean	value		16	ρ grain	455		γ true (dry)	-3,03
>>+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+x+	Watera	absorpt	ion		Ţ	J <mark>nit weight</mark>		
	Note the second				Over water			r water
	time		Moisture	Mass	Mass	Characteri	Mass	True
(min)	(days)	(Year)	content	$W_{A,t}$	$W_{A,char,t}$	γ char,t	$W_{B,char,t}$	γ true
			weight (%)	(kN/m^3)	(kN/m^3)	(kN/m^3)	(kN/m^3)	(kN/m^3)
5	0	0,00	3,72		_	-	-	-
120	0	0,00	8,06	-	-	-	-	-
	1	0,00	12,68		-	-	_	-
	30	0,08	40,13	0,9	0,39	3,22	0,87	-1,28
	90	0,25	56,90	1,3	0,55	3,38	1,22	-0,60
	150	0,41	64,67	1,4	0,62	3,45	1,37	-0,28
	180	0,49	65,22	1,5	0,64	3,47	1,43	-0,17
	210	0,58	68,54	1,5	0,67	3,50	1,48	-0,07
	240	0,66	70,84	1,6	0,68	3,51	1,52	0,01
	300	0,82	77,40	1,7	0,72	3,55	1,59	0,15
	365	1	-	-	0,74	3,57	1,65	0,27
	3650	10	hed .	-	1,06	3,89	2,36	1,70
1)	4886	13	117,50	2,7	1,10	3,93	2,45	1,88
	18250	50	-	Ħ	1,29	4,12	2,86	2,70
· · · · · · · · · · · · · · · · · · ·	29200	80	-	-	1,35	4,18	3,01	2,99
inalikintalaintura.uta	Magazine to a series of the se	***************************************		ned after test	in pycnomet	er at 50 mb	ar	
Remarl	k: Text in	italics a	ire extrapol	erated results				

Excerpt of EN 1097-6

Scope

This European Standard specifies methods for the determination of the particle density and water absorption of aggregates. The first five methods are applicable to normal aggregates with a sixth method for lightweight aggregates.

The principal methods specified are:

- a) a <u>wire basket method</u> for aggregates passing a 63 mm sieve but retained on a 31.5 mm sieve:
- b) <u>pyknometer methods</u> for aggregates passing a 31.5 mm sieve but retained on a 0.063 mm sieve.
- **NOTE 1** The wire basket method may be used as an alternative to the pyknometer method for aggregates between 4 mm and 31.5 mm. In case of dispute, the pyknometer method described in clause 8 should be used as the reference method.
- **NOTE 2** The wire basket method can also be used for single aggregate particles retained on a 63 mm sieve.

A method for the determination of pre-dried particle density of dense aggregates is specified in annex A.

NOTE 3 As the absorption of dense aggregates is low, pre-dried particle density can be determined directly in water. This method is different to the determination of particle density on an oven dried basis.

A modified version of the wire-basket method suitable for determining the particle density and water absorption of coarse aggregates saturated to constant mass is specified in annex B.

For <u>lightweight aggregates</u>, a modified version of the pyknometer test specified in annex A is specified in annex C.

EN 1097-6 Annex C (normative)

Determination of water absorption and density of light- weight aggregates

NOTE 2 The operation can also be carried out at other times (2 h and 7 days are examples to suit the end users for the aggregate).

NOTE 3 For most tests Mw will be determined after 24 h.

Ash (31,5 mm - 4mm) Absolute pressure 30 mbar

		(g)
	A	В
Pyknometer (empty)	1223,57	1225,23
Pyknometer + surface dried sample (0h)	2125,30	2093,95
Pyknometer + sample + water (0h)	3086,49	3069,53
Pyknometer + sample + water (1h) M2 ₁	3094,61	3076,61
Moister ratio after 1h	1,22	1,11
Increase of absorbed water amount (g) between 0h och 1h	8,12	7,08
Pyknometer + surface dried sample (1h) 1h	2133,42	2101,03
Pyknometer + sample + water (1h+4h) M2 ₅	3094,47	3077,24
Moister ratio after 5h	1,19	1,21
Increase of absorbed water amount (g) between 0h och 5h	7,98	7,71
Pyknometer + surface dried sample (1h+ 4h) 5h	2133,28	2101,66
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3096,35	3078,37
Moister ratio after 24h	1,48	1,38
Increase of absorbed water amount (g) between 0h och 24h	9,86	8,84
Pyknometer + surface dried sample (1h+ 4h + 19h) 24h	2131,36	2101,3
Increase of surface dried sample mellan 24h och 0h	6,06	7,35
Pyknometer + water M3	2767,40	2759,20
Lost of sample, including error i measurment 0-reading	3,80	1,49

 (Mg/m^3) DENSITY Stdev. В Average $\rho_{\rm ssd}$ (1h) 0,0048 $M1_1/(M1_1-(M2_1-M3))$ 1,562 1,568 1,565 M1₅/(M1₅-(M2₅-M3)) 1,561 1,570 0,0058 ρ_{ssd} (5h) 1,565 0,0034 ρ_{ssd} (24h) $M1_{24}/(M1_{24}-(M2_{24}-M3))$ 1,568 1,573 1,571

(%) WATERABS. Average Stdev. waterabs. (0h) WA0 100 x (M1₀ - M4)/M4 34,96 35,87 35,41 0,646 waterabs. (1h) WA1 100 x (M1₁ - M4)/M4 36,17 36,98 36,58 0,570 waterabs. (5h) WA5 100 x (M1₅ - M4)/M4 36,15 37,08 36,61 0,654 waterabs, (24h) WA24 100 x (M1₂₄ - M4)/M4 35,86 37,02 36,44 0,818

(g) Dried at 110 °C to constant mass В Dried sample M4 668,16 639,37 Tara 202,57 181,8 Tara + surface dried sample 1109,31 1057,13 Surface dried sample 906,74 875,33 Tara + dried sample at roomtemperature 870,73 821,17

 (Mg/m^3) DENSITY Average Stdev. M4/(M1₂₄-(M2₂₄-M3)) ρrd (24h) 1,154 1,148 1,151 0,0044 prd (5h) M4/(M1₅-(M2₅-M3)) 1,147 1,145 1,146 0,0012

Ash (31,5 mm - 4mm) Absolute pressure 50 mbar

	В	(g)
Pyknometer (empty)	1223,57	1225,23
Pyknometer + surface dried sample (0h)	2127,19	2101,12
Pyknometer + sample + water (0h)	3082,05	3067,85
Pyknometer + sample + water (1h) M2 _t	3092,17	3074,79
Moister ratio after 1h	1,51	1,09
Increase of absorbed water amount (g) between 0h och 1h	10,12	6,94
Pyknometer + surface dried sample (1h) 1h	2137,31	2108,06
Pyknometer + sample + water (1h+ 4h) M2 ₅	3092,30	3075,4
Moister ratio after 5h	1,53	1,18
Increase of absorbed water amount (g) between 0h och 5h	10,25	7,55
Pyknometer + surface dried sample (1h+ 4h) 5h	2137,44	2108,67
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3094,35	3077,13
Moister ratio after 24h	1,84	1,45
Increase of absorbed water amount (g) between 0h och 24h	12,30	9,28
Pyknometer + surface dried sample (1h+ 4h + 19h) 24h	2139,23	2107,77
Increase of surface dried sample mellan 24h och 0h	12,04	6,65
Pyknometer + water M3	2767,40	2759,20
Lost of sample, including error i measurment 0-reading	0,26	2,63

 (Mg/m^3)

DENSITY		В	C	Average	Stdev.
$\rho_{\rm sad}$ (1h)	M1 ₁ /(M1 ₁ -(M2 ₁ -M3))	1,551	1,556	1,554	0,0035
ρ _{ssd} (5h)	$M1_5/(M1_5-(M2_5-M3))$	1,552	1,557	1,555	0,0041
ρ_{ssd} (24h)	$M1_{24}/(M1_{24}-(M2_{24}-M3))$	1,555	1,563	1,559	0,0055

 (Mg/m^3)

DENSITY			. A	Average	Stdev.
ρrd (24h)	M4/(M1 ₂₄ -(M2 ₂₄ -M3))	1,135	1,132	1,134	0,0018
ρrd (5h)	M4/(M1 ₅ -(M2 ₅ -M3))	1,134	1,127	1,131	0,0052
				·	(%)

WATERABS.	В	C	Average	Stdev.
Vattenabs. (0h) W _{A0} 100 x (M1 ₀ - M4)/M4	35,24	36,99	36,12	1,239
Vattenabs. (1h) W _{A1} 100 x (M1 ₁ - M4)/M4	36,75	38,08	37,42	0,936
Vattenabs. (5h) W _{A5} 100 x (M1 ₅ - M4)/M4	36,77	38,17	37,47	0,990
Vattenabs. (24h) W _{A24} 100 x (M1 ₂₄ - M4)/M4	37,04	38,03	37,54	0,701

(g)

Dried at 110 °C to constant mass	В	C
Dried sample M4	668,16	639,37
Tara	202,57	181,8
Tara + surface dried sample	1109,31	1057,13
Surface dried sample	906,74	875,33
Tara + dried sample at roomtemperature	870,73	821,17

Ash (31,5 mm - 4mm) Absolute pressure 75 mbar

		(g)
,	В	C
Pyknometer (empty)	1223,57	1225,23
Pyknometer + surface dried sample (0h)	2054,54	2029,43
Pyknometer + sample + water (0h)	3007,82	2993,09
Pyknometer + sample + water (1h) M2 ₁	3084,3	3068,31
Moister ratio after 1h	11,45	11,76
Increase of absorbed water amount (g) between 0h och 1h	76,48	75,22
Pyknometer + surface dried sample (1h) 1h	2131,02	2104,65
Pyknometer + sample + water (1h+4h) M2 ₅	3086,85	3070,35
Moister ratio after 5h	11,83	12,08
Increase of absorbed water amount (g) between 0h och 5h	79,03	77,26
Pyknometer + surface dried sample (1h+4h) 5h	2133,57	2106,69
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3091,96	3075,24
Moister ratio after 24h	12,59	12,85
Increase of absorbed water amount (g) between 0h och 24h	84,14	82,15
Pyknometer + surface dried sample (1h+ 4h + 19h) 24h	2134,55	2108,33
Increase of surface dried sample mellan 24h och 0h	80,01	78,90
Pyknometer + water M3	2767,86	2758,97
Lost of sample, including error i measurment 0-reading	4,13	3,25

(g)

M1 ₀ (0h)	830,97	804,20
M1 ₁ (1h)	907,45	879,42
M1 ₅ (5h)	910,00	881,46
M1 ₂₄ (24h)	910,98	883,1

DENSITY		A	В	Average	(Mg/m³) Stdev.
$\rho_{\rm ssd}$ (1h)	M1 ₁ /(M1 ₁ -(M2 ₁ -M3))	1,535	1,543	1,539	0,0051
ρ _{ssd} (5h)	M1 ₅ /(M1 ₅ -(M2 ₅ -M3))	1,540	1,546	1,543	0,0046
ρ _{ssd} (24h)	M1 ₂₄ /(M1 ₂₄ -(M2 ₂₄ -M3))	1,552	1,558	1,555	0,0040

					(Mg/m^3)
DENSITY		A	В	Average	Stdev.
ρrd (24h)	M4/(M1 ₂₄ -(M2 ₂₄ -M3))	1,131	1,128	1,133	0,0074
prd (5h)	M4/(M1 ₅ -(M2 ₅ -M3))	1,13	1,122	1,126	0,0064

(%) WATERABS. В Stdev. Average Vattenabs. (0h) W_{A0} 100 x (M1₀ - M4)/M4 24,37 25,78 25,07 0,999 WAL 100 x (M1₁ - M4)/M4 35,81 37,54 36,68 1,224 Vattenabs. (1h) W_{A5} 100 x (M1₅ - M4)/M4 36,19 37,86 37,03 Vattenabs. (5h) 1,180 Vattenabs. (24h) WA24 100 x (M1₂₄ - M4)/M4 36,34 38,12 37,23 1,258

		(g)
Dried at 110 °C to constant mass	A	В
Dried sample M4	668,16	639,37
Tara	202,57	181,8
Tara + surface dried sample	1109,31	1057,13
Surface dried sample	906,74	875,33
Tara + dried sample at roomtemperature	870,73	821,17

Basalt (31,5 mm - 4mm) Absolute pressure 30 mbar

		(g)		
F. C.	A	В		
Pyknometer (empty)	1169,28	1225,23	Į.	
Pyknometer + surface dried sample (0h)	2664,71	2810,94		
Pyknometer + sample + water (0h)	3569,04	3718,47		
Pyknometer + sample + water (1h) M2 ₁	3571,74	3723,74		
Moister ratio after 1h	0,19	0,30		
Increase of absorbed water amount (g) between 0h och 1h	2,70	5,27		
Pyknometer + surface dried sample (1h) 1h	2667,41	2816,21		
Pyknometer + sample + water (1h+ 4h) M2 ₅	3571,76	3724,74		
Moister ratio after 5h	0,19	0,36		
Increase of absorbed water amount (g) between 0h och 5h	2,72	6,27		
Pyknometer + surface dried sample (1h+ 4h) 5h	2667,43	2817,21		
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3576,53	3727,02		
Moister ratio after 24h	0,53	0,49	ŀ	
Increase of absorbed water amount (g) between 0h och 24h	7,49	8,55		
Pyknometer + surface dried sample (1h+ 4h + 19h) 24h	2672	2819,33		
Increase of surface dried sample mellan 24h och 0h	7,29	8,39		
Pyknometer + water M3	2664,58	2759,06		
Lost of sample, including error i measurment 0-reading	0,20	0,16		
	A	(g) B		
M1 ₀ (0h)	1495,43	1585,71		
M1 ₁ (1h)	1498,13	1590,98		
M1 ₅ (5h)	1498,15	1591,98		
M1 ₂₄ (24h)	1502,72	1594,1		
D. D		_		(Mg/m^3)
DENSITY	A	В	Average	Stdev.
$\rho_{\rm ssd}$ (1h) $M1_1/(M1_1-(M2_1-M3))$	2,535	2,540	2,538	0,0037
ρ_{ssd} (5h) $M1_5/(M1_5-(M2_5-M3))$	2,535	2,542	2,538	0,0048
ρ_{ssd} (24h) $M1_{24}/(M1_{24}-(M2_{24}-M3))$	2,544	2,546	2,545	0,0016
	• •			(%)
WATERABS.	A	В	Average	Stdev.
Vattenabs. (0h) $W_{A0} = 100 \times (M1_0 - M4)/M4$	5,77	5,97	5,87	0,139
Vattenabs. (1h) W _{A1} 100 x (M1 ₁ - M4)/M4	5,96	6,32	6,14	0,253
Vattenabs. (5h) W _{A5} 100 x (M1 ₅ - M4)/M4	5,97	6,39	6,18	0,299
Vattenabs. (24h) W _{A24} 100 x (M1 ₂₄ - M4)/M4	6,29	6,53	6,41	0,170
Deiral at 110 %G to constant many		(g)		
Dried at 110 °C to constant mass	<u>A</u>	В		
Dried sample M4	1413,81	1496,39		
Tara	179,08	149,07		
Tara + surface dried sample	1680,21	1742,02		
Surface dried sample	1501,13	1592,95		
Tara + dried sample at roomtemperature	1592,89	1645,46		

				(Mg/m ³)
DENSITY	A	В	Average	Stdev.
ρrd (24h) M4/(M1 ₂₄ -(M2 ₂₄ -M3))	2,393	2,390	2,392	0,0023
ρrd (Sh) M4/(M1 ₅ -(M2 ₅ -M3))	2,392	2,389	2,391	0,0022

Basalt (31,5 mm - 4mm) Absolute pressure 50 mbar

		(g)
	A	В
Pyknometer (empty)	1169,28	1225,23
Pyknometer + surface dried sample (0h)	2658,40	2799,51
Pyknometer + sample + water (0h)	3560,58	3709,51
Pyknometer + sample + water (1h) M2 ₁	3566,05	3716,10
Moister ratio after 1h	0,39	0,44
Increase of absorbed water amount (g) between 0h och 1h	5,47	6,59
Pyknometer + surface dried sample (1h) 1h	2663,87	2806,1
Pyknometer + sample + water (1h+ 4h) M2 ₅	3567,4	3717,87
Moister ratio after 5h	0,48	0,51
Increase of absorbed water amount (g) between 0h och 5h	6,82	8,36
Pyknometer + surface dried sample (1h+4h) 5h	2665,22	2807,87
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3570,64	3722,5
Moister ratio after 24h	0,71	0,87
Increase of absorbed water amount (g) between 0h och 24h	10,06	12,99
Pyknometer + surface dried sample (1h+4h + 19h) 24h	2672,14	2815,12
Increase of surface dried sample mellan 24h och 0h	13,74	15,61
Pyknometer + water M3	2664,58	2759,15
Lost of sample, including error i measurment 0-reading	-3,68	-2,62

		(g)
	A	В
M1 ₀ (0h)	1489,12	1574,28
M1 ₁ (1h)	1494,59	1580,87
M1 ₅ (5h)	1495,94	1582,64
M1 ₂₄ (24h)	1502,86	1589,89

(Mg/m³) **Stdev.** DENSITY В Average ρ_{ssd} (1h) M1₁/(M1₁-(M2₁-M3)) 2,520 2,534 2,527 0,0098 M1₅/(M1₅-(M2₅-M3)) M1₂₄/(M1₂₄-(M2₂₄-M3)) p_{ssd} (5h) 2,522 2,537 2,529 0,0102 ρ_{ssđ} (24h) 2,518 2,538 2,528 0,0137

					(%)
WATERABS.		A	В	Average	Stdev.
Vattenabs. (0h) WA0	100 x (M1 ₀ - M4)/M4	5,33	5,21	5,27	0,086
Vattenabs. (1h) WA1	100 x (M1 ₁ - M4)/M4	5,71	5,65	5,68	0,048
Vattenabs. (5h) W _{A5}	100 x (M1 ₅ - M4)/M4	5,81	5,76	5,79	0,032
Vattenabs. (24h) W _{A24}	100 x (M1 ₂₄ - M4)/M4	6,30	6,25	6,27	0,036

		(g)
Dried at 110 °C to constant mass	A	В
Dried sample M4	1413,81	1496,39
Tara	179,08	149,07
Tara + surface dried sample	1680,21	1742,02
Surface dried sample	1501,13	1592,95
Tara + dried sample at roomtemperature	1592,89	1645,46

				(Mg/m^3)
DENSITY	A	В	Average	Stdey.
ord (24h) M4/(M1 ₂₄ -(M2 ₂₄ -M3))	2,369	2,388	2,379	0,0137
ord (5h) M4/(M1 ₅ -(M2 ₅ -M3))	2,384	2,398	2,391	0,0104

 (Mg/m^3)

0,0029

0,0130

Stdev.

В

2,386

2,371

2,390

2,390

Average

2,388

2,381

Basalt (31,5 mm - 4mm) Absolute pressure 75 mbar

DENSITY

prd (24h)

prd (5h)

M4/(M1₂₄-(M2₂₄-M3)) M4/(M1₅-(M2₅-M3))

		(g)		
	A	В		
Pyknometer (empty)	1169,28	1225,23		
Pyknometer + surface dried sample (0h)		2760,14		
Pyknometer + sample + water (0h)	3521,41	3697,06		
Pyknometer + sample + water (1h) M2 ₁	3548,99	3716,10		
Moister ratio after 1h	1,95	1,27		
Increase of absorbed water amount (g) between 0h och 1h	27,58	19,04		
Pyknometer + surface dried sample (1h) 1h	2645,81	2794,46		
Pyknometer + sample + water (1h+4h) M2 ₅	3553,1	3701,94		
Moister ratio after 5h	2,24	0,33		
Increase of absorbed water amount (g) between 0h och 5h	31,69	4,88		
Pyknometer + surface dried sample (1h+4h) 5h	2649,92	2798,96		
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3564,53	3712,49		,
Moister ratio after 24h	3,05	1,03		
Increase of absorbed water amount (g) between 0h och 24h	43,12	15,43		
Pyknometer + surface dried sample (1h+ 4h + 19h) 24h	2661,2	2805,57		
Increase of surface dried sample mellan 24h och 0h	42,97	45,43		
Pyknometer + water M3	2664,08	2759,23		
Lost of sample, including error i measurment 0-reading	0,15	-30,00		
		(g)		
	A	В		
M1 ₀ (0h)	1448,95	1534,91		
$M1_1$ (1h)	1476,53	1569,23		
M1 ₅ (5h)		1573,73		
M1 ₂₄ (24h)	1491,92	1580,34		
111124 (2011)	1771,72	1300,34		1
The Part of Colonial A		_		(Mg/m³)
DENSITY	<u>A</u>	В	Average	Stdev.
$\rho_{ssd}(1h)$ $M1_1/(M1_1-(M2_1-M3))$	2,496	2,563	2,529	0,0473
$\rho_{\rm ssd}$ (5h) $M1_{\rm 5}/(M1_{\rm 5}-(M2_{\rm 5}-M3))$	2,503	2,494	2,498	0,0062
ρ_{ssd} (24h) Ml_{24} /(Ml_{24} -($M2_{24}$ - $M3$))	2,522	2,520	2,521	0,0016
				(%)
WATERABS.	A	В	Average	Stdev.
Vattenabs. (0h) W _{A0} 100 x (M1 ₀ - M4)/M4	2,49	2,57	2,53	0,063
Vattenabs. (1h) W _{A1} 100 x (M1 ₁ - M4)/M4	4,44	4,87	4,65	0,305
Vattenabs. (5h) W _{A5} 100 x (M1 ₅ - M4)/M4	4,73	5,17	4,95	0,312
Vattenabs. (24h) W _{A24} 100 x (M1 ₂₄ - M4)/M4		5,61	5,57	
V attendos. (241) VV A24 100 X (1VII 24 - 1VI4)/1VI4	5,52	3,01	3,37	0,060
		(g)		
Dried at 110 °C to constant mass	A	В		
Dried sample M4	1413,81	1496,39		
Tara	179,08			
Tara + surface dried sample		1742,02		
Surface dried sample		1592,95		
Tara + dried sample at roomtemperature	1592,89			

Concrete (25 mm - 4mm) Absolute pressure 30 mbar

	(g)		
A	В		
1169,27	1223,60		
2741,32	2718,79		
3620,05	3672,77		
3619,57	3672,99		
-0,03	0,01		
-0,48	0,22		
2740,84	2719,01		
3620,09	3673,07		
0,00	0,02		
0,04	0,30		
2741,36	2719,09		
3620,10	3672,91		
0,00	0,01		
0,05	0,14		
2741,44	2718,53		
0,12	-0,26		
2664,22	2767,48		
-0,07	0,40		
A	В		
1572,05	1495,19		
1571,57	1495,41		
1572,09	1495,49		
1572,17	1494,93		
			(Mg/m^3)
A	В	Average	Stdev.
2,550	2,535	2,543	0,0108
2,551	2,535	2,543	0,0113
2,551	2,536	2,543	0,0107
<u></u>	•		(%)
A	В	Average	Stdey.
8,34	8,54	8,44	0,138
8,31	8,55	8,43	0,172
8,34	8,56	8,45	0,151
8,35	8,52	8,43	0,119
	1169,27 2741,32 3620,05 3619,57 -0,03 -0,48 2740,84 3620,09 0,00 0,04 2741,36 3620,10 0,00 0,05 2741,44 0,12 2664,22 -0,07 A 1572,05 1571,57 1572,09 1572,17 A 2,550 2,551 A 8,34 8,31 8,34	1169,27 1223,60 2741,32 2718,79 3620,05 3672,77 3619,57 3672,99 -0,03 0,01 -0,48 0,22 2740,84 2719,01 3620,09 3673,07 0,00 0,02 0,04 0,30 2741,36 2719,09 3620,10 3672,91 0,00 0,01 0,05 0,14 2741,44 2718,53 0,12 -0,26 2664,22 2767,48 -0,07 0,40 A	A B 1169,27 1223,60 2741,32 2718,79 3620,05 3672,77 3619,57 3672,99 -0,03 0,01 -0,48 0,22 2740,84 2719,01 3620,09 3673,07 0,00 0,02 0,04 0,30 2741,36 2719,09 3620,10 3672,91 0,00 0,01 0,05 0,14 2741,44 2718,53 0,12 -0,26 2664,22 2767,48 -0,07 0,40 A B 1572,05 1495,19 1572,17 1494,93 A B Average 2,550 2,535 2,543 2,551 2,535 2,543 2,551 2,536 2,543 A B Average 8,34 8,54 8,44 8,31 8,55 8,43 8,34 8,56 8,45

Dried at 110 °C to constant mass	A	В
Dried sample M4	1451,01	1377,59
Tara	148,08	150,47
Tara + surface dried sample	1718,07	1644,11
Surface dried sample	1569,99	1493,64
Tara + dried sample at roomtemperature	1599,09	1528,06

(Mg/m^3)	
AV	

DENSITY		A	В	Average	Stdev.
ρrd (24h)	M4/(M1 ₂₄ -(M2 ₂₄ -M3))	2,354	2,337	2,346	0,0124
ρrd (5h)	M4/(M1 ₅ -(M2 ₅ -M3))	2,355	2,335	2,345	0,0137

 (Mg/m^3)

0,0123

0,0190

Stdev.

В

2,330

2,333

2,347

2,360

Average

2,338

2,346

Concrete (25 mm - 4mm) Absolute pressure 30 mbar

DENSITY

prd (24h)

ρrd (5h)

M4/(M1₂₄-(M2₂₄-M3)) M4/(M1₅-(M2₅-M3))

		(g)		
	A	В		
Pyknometer (empty)	1169,27	1223,60		
Pyknometer + surface dried sample (0h)	2739,79	2719,57		
Pyknometer + sample + water (0h)	3619,57	3672,61		
Pyknometer + sample + water (1h) M2 ₁	3618,93	3672,48		
Moister ratio after 1h	-0,04	-0,01		
Increase of absorbed water amount (g) between 0h och 1h	-0,64	-0,13		
Pyknometer + surface dried sample (1h) 1h	2739,15	2719,44		
Pyknometer + sample + water (1h+4h) M2 ₅	3619,08	3672,19		
Moister ratio after 5h	-0,03	-0,03		
Increase of absorbed water amount (g) between 0h och 5h	-0,49	-0,42		
Pyknometer + surface dried sample (1h+ 4h) 5h	2739,3	2719,15		
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3620,13	3673,04		
Moister ratio after 24h	0,04	0,03	•	
Increase of absorbed water amount (g) between 0h och 24h	0,56	0,43		
Pyknometer + surface dried sample (1h+4h+19h) 24h	2743,63	2720,78		
Increase of surface dried sample mellan 24h och 0h	3,84 2663,99	1,21		
Pyknometer + water M3 Lost of sample, including error i measurment 0-reading	-3,28	2767,19 -0,78		
Lost of sample, meridang error i measurment o-reading	-3,26	-0,76		
	A	В		
M1 ₀ (0h)	1570,52	1495,97		
M1 ₁ (1h)	1569,88	1495,84		
M1 ₅ (5h)	1570,03	1495,55		
M1 ₂₄ (24h)	1574,36	1497,18		
				(Mg/m^3)
DENSITY	A	В	Average	Stdev.
$\rho_{\rm ssd}$ (1h) $M1_1/(M1_1-(M2_1-M3))$	2,553	2,533	2,543	0,0141
ρ_{ssd} (5h) $M1_{5}/(M1_{5}-(M2_{5}-M3))$	2,553	2,532	2,543	0,0146
ρ_{ssd} (24h) $M1_{24}$ -($M2_{24}$ - $M3$))	2,547	2,532	2,539	0,0104
				(%)
WATERABS.	A	В	Average	Stdev.
Vattenabs. (0h) W _{A0} 100 x (M1 ₀ - M4)/M4	8,24	8,59	8,41	0,252
Vattenabs. (1h) W _{A1} 100 x (M1 ₁ - M4)/M4	8,19	8,58	8,39	0,277
Vattenabs. (5h) W _{A5} 100 x (M1 ₅ - M4)/M4	8,20	8,56	8,38	0,255
Vattenabs. (24h) W _{A24} 100 x (M1 ₂₄ - M4)/M4	8,50	8,68	8,59	0,127
	· · · · · · · · · · · · · · · · · · ·	<u>_</u>	 '	
		(g)		
Dried at 110 °C to constant mass	A	В		
Dried sample M4	1451,01	1377,59		
Tara	148,08	150,47		
Tara + surface dried sample	1718,07	1644,11		
Surface dried sample	1569,99	1493,64		
Tara + dried sample at roomtemperature	1599,09	1528,06		
Tara + dried sample at roomtemperature	1599,09	1528,06		

Pre-testing

Concrete (25 mm - 4mm) Absolute pressure 75 mbar

		(g)		
	A	В		
Pyknometer (empty)	1211,67	1223,60		
Pyknometer + surface dried sample (0h)	2781,61	2717,56		
Pyknometer + sample + water (1h) M2 ₁	3694,40	3671,74		
Pyknometer + surface dried sample (1h) 1h	2786,95	2724,11		
Pyknometer + sample + water (1h+ 4h) M2 ₅	3694,24	3671,00		
Pyknometer + surface dried sample (1h+ 4h) 5h	2786,23	2722,90		
Pyknometer + sample + water (1h+ 4h + 19h) M2 ₂₄	3694,78	3672,43		
Pyknometer + surface dried sample (1h+ 4h + 19h) 24h	2785,17	2722,03		
Pyknometer + water M3	2740,56	2767,40		
		(g)		
	A	В		
M1 ₀ (0h)	1569,94	1493,96		
M1 ₁ (1h)	1575,28	1500,51		
M1 _s (5h)	1574,56	1499,30		
M1 ₂₄ (24h)	1573,50	1498,43		
				(Mg/m^3)
DENSITY	A	В	Average	Stdev.
$\rho_{\rm ssd}$ (1h) $M1_1/(M1_1-(M2_1-M3))$	2,535	2,517	2,526	0,0127
$\rho_{\rm ssd}$ (5h) M1 ₅ /(M1 ₅ -(M2 ₅ -M3))	2,536	2,517	2,526	0,0135
ρ_{ssd} (24h) $M1_{24}$ ($M2_{24}$ - $M3$))	2,541	2,525	2,533	0,0111
				(%)
VATTENABS.	A	В	Medelv.	Stday.
Vattenabs. (0h) W _{A0} 100 x (M1 ₀ - M4)/M4	8,20	8,45	8,32	0,177
Vattenabs. (1h) W _{A1} 100 x (M1 ₁ - M4)/M4	8,56	8,92	8,74	0,253
Vattenabs. (5h) W _{A5} 100 x (M1 ₅ - M4)/M4	8,51	8,83	8,67	0,226
Vattenabs. (24h) W _{A24} 100 x (M1 ₂₄ - M4)/M4	8,44	8,77	8,61	0,233
			•	

		(g)
Dried at 110 °C to constant mass	A	В
Dried sample M4	1451,01	1377,59
Tara	148,08	150,47
Tara + surface dried sample	1718,07	1644,11
Surface dried sample	1569,99	1493,64
Tara + dried sample at roomtemperature	1599,09	1528,06

DENSITY		A	В	Average	Stdev.
prd (24h)	M4/(M1 ₂₄ -(M2 ₂₄ -M3))	2,343	2,322	2,332	0,0152
ρrd (5h)	M4/(M1 ₅ -(M2 ₅ -M3))	2,337	2,313	2,325	0,0173

Sample:	Bottom ash			Date:	31/5 2002
Grading:	4-25 mm			Name:	Birgir Vilhelmsson
Conditionin	g:	Oven dried,	24 hour soaking		

Pyknometer no.			10	5	
Dry sample+pyknometer	m_2	g			
Pyknometer	m_l	g			
Dry sample*	m_2 - m_1 = m_{ds}	g	960,5	888,4	0
Pyknometer+water+sample (25°C)	m_3	g	3465,1	3456,1	
Waterfilled pyknometer (25°C)	$\mathrm{m_4}$	g	3140,4	3165,1	
Volume of sample	$V_s = m_4 + m_{ds} - m_3$	cm ³	635,8	597,4	0
Apparent particle density	$Q_{a=} m_{ds}/V_{s}$	g/cm ³	1,51	1,49	
Mean				1,50	
Sample saturated, surface dry	m_5	g	1175,1	1070,9	
Water absorption	$100x(m_5-m_{ds})/m_{ds}$	%	22,34	20,54	
Mean				21,44	

Particle density on a ssd basis	$Q_{ssd} = m_5/(m_5-(m_3-m_4))$	1,38	1,37	
Mean			1,38	
Part. dens. on an oven dried basis	$Q_{odb} = m_{ds}/m_{5}-(m_{3}-m_{4})$	1,13	1,14	
Mean			1,13	

^{*}In all cases, the oven dry value after the completion of the test shall be recorded and used.

Sample:	Bottom ash	<u>: </u>	Date:	31/5 2002
Grading:	4-25 mm		Name:	Birgir Vilhelmsson
Conditioning	ng:	Not oven dried, 24 hours soaking		

Pyknometer no.			8	8	
Dry sample+pyknometer	m_2	g			
Pyknometer	$\mathbf{m_l}$	g			
Dry sample*	m_2 - m_1 = m_{ds}	g	928,9	934,6	0
Pyknometer+water+sample (25°C)	$\mathrm{m_3}$	g	3512,6	3503,8	
Waterfilled pyknometer (25°C)	m_4	g	3165,1	3140,4	<u></u>
Volume of sample	$V_s = m_4 + m_{ds} - m_3$	cm ³	581,4	571,2	0
Apparent particle density	$Q_{a=} m_{ds}/V_{s}$	g/cm ³	1,60	1,64	•
Mean				1,62	
Sample saturated, surface dry	m_5	g	1191,7	1184,1	•
Water absorption	$100x(m_5-m_{ds})/m_{ds}$	%	28,29	26,70	
Mean				27,49	

Particle density on a ssd basis	$Q_{ssd} = m_5/(m_5-(m_3-m_4))$	1,41	1,44	
Mean			1,43	
Part. dens. on an oven dried basis	$Q_{odb} = m_{ds}/m_5 - (m_3 - m_4)$	1,10	1,14	
Mean			1,12	

^{*}In all cases, the oven dry value after the completion of the test shall be recorded and used.

Pre-testing

EN-

1097-6

Nordtest Project no.

Mean

V-0201

Appendix 3 (12)

2,40

23-mar-02

^{*}In all cases, the oven dry value after the completion of the test shall be recorded and used.

Sample: Porous basalt Date: 23/3 2002
Grading: 4-25 mm Not oven dried, 24 hours soaking

Date: 23/3 2002
Name: Pétur Pétursson

Pyknometer no.			A-10	A-8	A-4
Dry sample+pyknometer	m_2	g			
Pyknometer	m_l	g			
Dry sample*	m_2 - m_1 = m_{ds}	g	1804,2	1872,3	1940,2
Pyknometer+water+sample (25°C)	m_3	g	4278,3	4313,9	4365,5
Waterfilled pyknometer (25°C)	m_4	g	3141,1	3128,5	3140,2
Volume of sample	$V_s = m_4 + m_{ds} - m_3$	cm ³	667	686,9	714,9
Apparent particle density	$Q_{a=} m_{ds}/V_{s}$	g/cm ³	2,70	2,73	2,71
Mean				2,71	
Sample saturated, surface dry	m_5	g	1898,5	1965,4	2037,3
Water absorption	$100 x (m_5 - m_{ds}) / m_{ds}$	%	5,23	4,97	5,00
Mean				5,07	

Particle density on a ssd basis	$Q_{ssd} = m_s/(m_s-(m_3-m_4))$	2,49	2,52	2,51
Mean			2,51	
Part. dens. on an oven dried basis	$Q_{odb} = m_{ds}/m_5 - (m_3 - m_4)$	2,37	2,40	2,39
Mean			2,39	

^{*}In all cases, the oven dry value after the completion of the test shall be recorded and used.

Date:

10/5 2002

Sample:

Crushed concrete

Grading: 4-25 mm	Name:	Birgir Vilhelmsson			
Conditioning: Oven drie					
				· · · · · · · · · · · · · · · · · · ·	
Pyknometer no.			6	6	
Dry sample+pyknometer	m_2	g			
Pyknometer	$\mathbf{m_l}$	g			
Dry sample*	m_2 - m_1 = m_{ds}	g	1911,3	1864	0
Pyknometer+water+sample (25°C)	m_3	g	4375,4	4345,2	
Waterfilled pyknometer (25°C)	$\mathbf{m_4}$	g	3137,2	3137,2	
Volume of sample	$V_s = m_4 + m_{ds} - m_3$	cm ³	673,1	656	0
Apparent particle density	$Q_{a=} m_{ds}/V_{s}$	g/cm ³	2,84	2,84	
Mean				2,84	
Sample saturated, surface dry	$\mathrm{m_5}$	g	2045,5	1997,2	
Water absorption	$100x(m_5-m_{ds})/m_{ds}$	%	7,02	7,15	
Mean				7,08	

Particle density on a ssd basis	$Q_{ssd} = m_5/(m_5-(m_3-m_4))$	2,53	2,53	##########
Mean			2,53	
Part. dens. on an oven dried basis	$Q_{odb} = m_{ds}/m_5 - (m_3 - m_4)$	2,37	2,36	#######################################
Mean			2,36	

^{*}In all cases, the oven dry value after the completion of the test shall be recorded and used.

Sample: Crushed concrete Grading: 4-25 mm	_	Date: Name:	10/5 2002 Birgir Vilhe	Imsson	,	
Conditioning: Not oven dried, 24 hours soaking						
Pyknometer no.			8	8		
r yknometer no.			0	0		
Dry sample+pyknometer	m_2	g				
Pyknometer	$\mathbf{m_1}$	g				
Dry sample*	m_2 - m_1 = m_{ds}	g	1743,8	1914,9	0	
Pyknometer+water+sample (25°C)	m_3	g	4270,0	4385,2		
Waterfilled pyknometer (25°C)	m_4	g	3127,8	3127,8		
Volume of sample	$V_s = m_4 + m_{ds} - m_3$	cm ³	601,6	657,5	0	
Apparent particle density	$Q_{a=} m_{ds}/V_s$	g/cm ³	2,90	2,91		
Mean				2,91		
Sample saturated, surface dry	m_5	g	1880,2	2064,2		
Water absorption	$100 x (m_5 - m_{ds}) / m_{ds}$	%	7,82	7,80		
Mean				7,81		

Particle density on a ssd basis	$Q_{ssd} = m_5/(m_5-(m_3-m_4))$	2,55	2,56	###########
Mean			2,55	
Part. dens. on an oven dried basis	$Q_{odb} = m_{ds}/m_5-(m_3-m_4)$	2,36	2,37	##########
Mean			2,37	

^{*}In all cases, the oven dry value after the completion of the test shall be recorded and used.

Pre-testing

Appendix 3(16)

Nordtest

Project no.

V-0201

1580-02

Page 5(5)

31-maj-02

Rev.

Determination of water absorption after boiling

Sample:

Porous basalt/Crushed concrete/Bottom ash

Date:

Grading:

4-25 mm

Name:

10/5 2002 Birgir Vilhelmsson

			BOILING						
	Oven dry	1 hour, g	%	8 hour	%	24 hours	%		
Porous basalt									
Oven dried	1957,8	2031,2	3,75	2037,1	4,05	2050,4	4,73		
Not oven dried	1913,3	1996,1	4,33	2005,2	4,80	2018,5	5,50		
Crushed concrete						•			
Oven dried	1721,2	1843,3	7,09	1847,9	7,36	1849,9	7,48		
Not oven dried	1739,0	1865,4	7,27	1871,5	7,62	1872,3	7,67		
Bottom ash	Ĭ								
Oven dried	1090	1401,9	28,61	1454,5	33,44	1456,8	33,65		
Not oven dried	1340,7	1781,4	32,87	1808	34,85	1796,2	33,97		

Sample: Ash

Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1

Test portion Test portion Test portion Average

Particle density and water absorption	a	b	c		
Pyknometer (empty). (g) + grid	M ₀	718,85	738,30	714,96	
Pyknometer + dry washed sample (g) + grid	M ₅	1253,39	1312,37	1275,09	
Dry washed sample (g)	М	534,54	574,07	560,13	556,25
Pyknometer + saturated sample in water_(g) + grid	M ₂	2235,01	2261,96	2240,42	
Pyknometer + water (g) + grid	M ₃	1992,28	1996,53	1983,99	
Saturated and surface dried sample in air (g)	M ₁	710,45	748,42	745,94	734,94
Oven-dried sample in air M _{4.} (g)	M ₄	530,73	565,60	555,42	550,58
Water absorption.(weight-%)	w	33,86	32,32	34,30	33,50
Apparent particle density. (Mg/m³)	ρ_a	1,843	1,884	1,858	1,86
Particle density on an oven dried basis . (Mg/m3)	$ ho_{\it rd}$	1,135	1,171	1,135	1,15
Particle density on a saturated and					
surface-dried basis . (Mg/m3)	$ ho$ $_{ssd}$	1,519	1,550	1,524	1,53

Table 2

Moisture content at start, third test portion (Chapter 8.2) Test portion

Weight after ? 5 days drying in $40\,^{\circ}$ C. (g) M_{6} 450,14 Weight after drying to constant weight in $110\,^{\circ}$ C. (g) M_{7} 445,32 Weight water content M_{6} - M_{7} . (g) M_{w} 4,82 Moister ratio. (weight-%) MR 1,08

Sample: Concrete

Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1

Test portion Test portion Average

1 abic 1	rest portion	rest bortion	rest portion	Average	
Particle density and water absorption	•	a	b	c	
Pyknometer (empty). (g)	M ₀	714,99	734,72	711,45	
Pyknometer + dry washed sample, (g)	M ₅	1931,70	2029,96	1982,77	
Dry washed sample (g)	M	1216,71	1295,24	1271,32	1261,09
Pyknometer + saturated sample in water (g)	M_2	2779,32	2829,98	2803,81	
Pyknometer + water (g)	M_3	1989,67	1993,89	1981,55	
Saturated and surface dried sample in air (g)	M_1	1291,98	1379,46	1353,64	1341,69
Oven-dried sample in air M _{4.} (g)	M ₄	1204,73	1279,36	1257,15	1247,08
Water absorption.(weight-%)	w	7,242	7,824	7,675	7,58
Apparent particle density. (Mg _i m ³)	ρ_a	2,902	2,886	2,891	2,89
Particle density on an oven dried basis . (Mg/m3)	$ ho_{\it rd}$	2,398	2,354	2,366	2,38
Particle density on a saturated and					
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	2,572	2,539	2,547	2,55

Table 2

Moisture content at start,	Test portion
third test portion (Chapter 8.2)	c

Weight after ? 5 days drying in 40 °C. (g)	M ₆	1286,06
Weight after drying to constant weight in 110°C. (g)	M ₇	1269,42
Weight water content M ₆ -M _{7.} (g)	$M_{\rm w}$	16,64
Moister ratio. (weight-%)	MR	1,31

Sample: Basalt

Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1

Partials density and water absorption

Test portion Test portion Test portion Average

Particle density and water absorption		a a	b	C C	Average
I article density and water absorption		1		1	1
Pyknometer (empty). (g)	Mo	714,96	734,68	711,41	
Pyknometer + dry washed sample (g)	M ₅	1871,97	1962,14	1926,88	
Dry washed sample (g)	M	1157,01	1227,46	1215,47	1199,98
Pyknometer + saturated sample in water (g)	M_2	2719,08	2765,52	2746,59	
Pyknometer + water (g)	M_3	1989,67	1993,89	1981,55	
Saturated and surface dried sample in air (g)	M_1	1212,76	1286,20	1279,43	1259,46
Oven-dried sample in air M _{4.} (g)	M ₄	1155,21	1225,40	1213,53	1198,05
Water absorption.(weight-%)	W	4,98	4,96	5,43	5,12
Apparent particle density. (Mg,m³)	ρ_a	2,713	2,700	2,706	2,71
Particle density on an oven dried basis . (Mg/m3)	$ ho_{\it rd}$	2,390	2,381	2,359	2,39
Particle density on a saturated and					
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	2,509	2,500	2,487	2,50

Table 2

Moisture content at start,

Test portion

third test portion (Chapter 8.2)

Weight after ? 5 days drying in 40 °C. (g)	M_6	1371,36
Weight after drying to constant weight in 110°C. (g)	M ₇	1370,02
Weight water content M ₆ -M _{7.} (g)	$M_{ m w}$	1,34
Moister ratio. (weight-%)	MR	0,10

Parallel test

Appendix 4 (4)

IBRI

Sample: Ash

Testing conditions: Absolute pressure

		Sample 2	Sample 16	
Table 1 Particle density and water absorption		Test portion a	Test portion b	Average
	M	524.16	579 SD	
Pycnometer (empty). (g)	M_0	524,16	578,59	
Pycnometer + oven-dried sample (40 °C). (g)	M ₅	1412,21	1511,29	
Oven-dried sample (40 °C). (g)	M	888,05	932,70	910,38
Pycnometer + saturated sample in water. (g)	M ₂	3517,19	3561,90	
Pycnometer + water. (g)	M_3	3109,60	3135,60	
Saturated and surface dried sample in air (g)	M ₁	1179,08	1227,11	1203,10
Oven-dried (110°C) sample in air (g)	M ₄	880,45	923,25	901,85
Water absorption.(weight-%)	W _{a5}	33,918	32,912	33,41
Apparent particle density. (Mg/m³)	ρ_a	1,862	1,858	1,86
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	1,141	1,153	1,15
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	1,528	1,532	1,53

Table 2	Sample 6		
Moisture content at start, third test portion (Chapter 8.2)	, ·		
Mass of sample after ? 120 h (40 °C). (g)	$ m M_6$	861,5	
Mass of oven-dried sample (110°C). (g)	M_7	856,76	
Mass of water content M ₆ -M _{7.} (g)	$M_{ m w}$	4,74	
Moister content. (weight-%)	MC	0,55	

Parallel test

Appendix 4 (5)

IBRI

Sample: Concrete

Testing conditions: Absolute pressure

Table 1				
Table 1		Test port.	Test port.	Average
Particle density and water absorption		no. 6	no. 22	
Pyknometer (empty). (g)	M ₀	524,16	578,59	
Pyknometer + dry washed sample (g)	M ₅	2981,80	2881,96	
Dry washed sample (g)	М	2457,64	2303,37	·
Pyknometer + saturated sample in water_ (g)	M_2	4703,40	4832,40	
Pyknometer + water (g)	M ₃	3109,60	3135,60	
Saturated and surface dried sample in air (g)	M_1	2601,79	2455,20	
Oven-dried sample in air M _{4.} (g)	M_4	2422,58	2270,42	
Water absorption.(weight-%)	w	7,40	8,14	7,77
Apparent particle density. (Mg/m³)	ρ_a	2,923	3,958	3,44
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	2,403	2,994	2,70
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	2,581	3,237	2,91

Table 2

Moisture content at start, third test portion (Chapter 8.2)		Test portion no. 19
Weight after ? 5 days drying in 40 °C. (g)	M_6	2507,70
Weight after drying to constant weight in 110°C. (g)	M ₇	2475,59
Weight water content M ₆ -M _{7.} (g)	M_w	32,11
Moister ratio. (weight-%)	MR	1,30

IBRI

Sample: Basalt

Testing conditions: Absolute pressure

Table 1 Particle density and water absorption		Test port. no. 9	Test port. no. 19	Average
Pyknometer (empty). (g)	M ₀	578,6	545,87	
Pyknometer + dry washed sample (g)	M ₅	2896,78	2977,03	
Dry washed sample (g)	М	2318,18	2431,16	
Pyknometer + saturated sample in water (g)	M ₂	4603,60	4661,00	
Pyknometer + water (g)	M ₃	3135,60	3166,70	
Saturated and surface dried sample in air (g)	M ₁	2427,16	2539,72	
Oven-dried sample in air M _{4.} (g)	M ₄	2313,03	2425,63	
Water absorption.(weight-%)	w	4,93	4,70	4,82
Apparent particle density. (Mg/m³)	ρ_a	2,737	2,604	2,67
Particle density on an oven dried basis . (Mg/m3)	$ ho_{\it rd}$	2,412	2,320	2,37
Particle density on a saturated and				
surface-dried basis. (Mg/m3)	$ ho_{ssd}$	2,531	2,429	2,48

Table 2

Moisture content at start, third test portion (Chapter 8.2)		Test portion no. 6
Weight after ? 5 days drying in 40 °C. (g)	M_6	2551,64
Weight after drying to constant weight in 110°C. (g)	M ₇	2548,76
Weight water content M ₆ -M _{7.} (g)	M _w	2,88
Moister ratio. (weight-%)	MR	0,11

Sample: Ash

Testing conditions: Absolute pressure

Table 1		Test portion	_	Average
Particle density and water absorption		a	b	
Pyknometer (empty). (g)	M ₀	525,2	524,60	
Pyknometer + dry washed sample (g)	M ₅	1458,50	1484,70	
Dry washed sample (g)	M	933,30	960,10	946,70
Pyknometer + saturated sample in water (g)	M_2	3085,30	3103,50	
Pyknometer + water (g)	M ₃	2692,80	2701,30	
Saturated and surface dried sample in air (g)	M_1	1134,50	1135,50	1135,00
Oven-dried sample in air M _{4.} (g)	M ₄	838,30	838,50	838,40
Water absorption.(weight-%)	w	35,333	35,420	35,38
Apparent particle density. (Mg/m³)	ρ_a	1,880	1,922	1,90
Particle density on an oven dried basis . (Mg/m3)	$ ho_{rd}$	1,130	1,143	1,14
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	1,529	1,548	1,54

Table 2

Moisture content at start, third test portion (Chapter 8.2)	Test portion c	
Weight after ? 5 days drying in 40 °C. (g)	M ₆	896,1
Weight after drying to constant weight in 110°C. (g)	M ₇	890,8
Weight water content M ₆ -M _{7.} (g)	$M_{\rm w}$	5,3
Moister ratio. (weight-%)	MR	0,59

Sample: Cocrete

Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1 Particle density and water absorption		Test portion a	Test portion b	Average
Pyknometer (empty). (g)	M_0	617,7	617,00	
Pyknometer + dry washed sample (g)	M ₅	2691,30	2675,20	
Dry washed sample (g)	M	2073,60	2058,20	2065,90
Pyknometer + saturated sample in water, (g)	M ₂	4204,00	4189,00	
Pyknometer + water (g)	M ₃	2879,00	2879,90	
Saturated and surface dried sample in air_ (g)	\mathbf{M}_1	2188,30	2154,00	2171,15
Oven-dried sample in air M _{4.} (g)	M_4	2029,60	1998,10	2013,85
Water absorption.(weight-%)	W	7,819	7,802	7,81
Apparent particle density. (Mg/m³)	ρ_a	2,880	2,900	2,89
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	2,351	2,365	2,36
Particle density on a saturated and			:	
surface-dried basis . (Mg/m3)	$ ho_{\it ssd}$	2,535	2,549	2,54

Table 2

Moisture content at start, third test portion (Chapter 8.2)		Test portion c
Weight after ? 5 days drying in 40 °C. (g)	M_6	2516,5
Weight after drying to constant weight in 110°C. (g)	M_7	2478,7
Weight water content M ₆ -M _{7.} (g)	$M_{ m w}$	37,8
Moister ratio. (weight-%)	MR	1,52

Sample: Basalt

Testing conditions: Absolute pressure

Table 1 Particle density and water absorption		Test portion	Test portion	Average
Pyknometer (empty). (g)	M_0	523,5	522,40	
Pyknometer + dry washed sample (g)	M ₅	2593,80	2540,40	
Dry washed sample (g)	M	2070,30	2018,00	2044,15
Pyknometer + saturated sample in water (g)	M ₂	3998,50	3952,50	
Pyknometer + water (g)	M ₃	2691,60	2679,10	
Saturated and surface dried sample in air (g)	M ₁	2155,80	2099,90	2127,85
Oven-dried sample in air M _{4.} (g)	M ₄	2066,50	2014,90	2040,70
Water absorption.(weight-%)	W	4,321	4,219	4,27
Apparent particle density. (Mg/m³)	ρ_a	2,721	2,717	2,72
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	2,434	2,438	2,44
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	2,540	2,541	2,54

Table 2

Moisture content at start, third test portion (Chapter 8.2)		Test portion c
Weight after ? 5 days drying in 40 °C. (g)	M_6	2652,8
Weight after drying to constant weight in 110°C. (g)	M_7	2650,7
Weight water content M ₆ -M _{7.} (g)	$M_{\rm w}$	2,1
Moister ratio. (weight-%)	MR	0,08

Sample: Granite

Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1

Test portion Test portion Test portion Average

Particle density and water absorption		a	b	С	
Pyknometer (empty). (g)	M ₀	714,94	734,68	711,4	
Pyknometer + dry washed sample (g)	M ₅	2064,31	2127,06	2059,21	
Dry washed sample (g)	м	1349,37	1392,38	1347,81	1363,19
Pyknometer + saturated sample in water (g)	M ₂	2829,18	2861,35	2820,60	
Pyknometer + water _. (g)	M ₃	1989,67	1993,89	1981,55	
Saturated and surface dried sample in air (g)	M _I	1363,65	1405,57	1361,19	1376,80
Oven-dried sample in air M _{4.} (g)	M ₄	1346,90	1390,00	1345,10	1360,67
Water absorption.(weight-%)	w	1,24	1,12	1,20	1,19
Apparent particle density. (Mg/m³)	ρ_a	2,65	2,66	2,66	2,66
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	2,57	2,58	2,58	2,58
Particle density on a saturated and					
surface-dried basis . (Mg/m3)	ρ_{ssd}	2,60	2,61	2,61	2,61

Table 2

Moisture content at start,	Test portion
third test portion (Chapter & 2)	c

Weight after ? 5 days drying in 40 °C. (g)	M ₆	1063,23
Weight after drying to constant weight in 110°C. (g)	M ₇	1061,54
Weight water content M ₆ -M _{7.} (g)	M_w	1,69
Moister ratio. (weight-%)	MR	0,16

Sample: Blast furnace slag

Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1

Test portion Test portion Test portion Average

Particle density and water absorption		a	b	c	
Pyknometer (empty). (g)	Mo	714,93	734,67	711,39	
Pyknometer + dry washed sample (g)	M ₅	1991,00	2056,50	2004,92	
Dry washed sample (g)	М	1276,07	1321,83	1293,53	1297,14
Pyknometer + saturated sample in water (g)	M ₂	2795,92	2829,79	2799,42	
Pyknometer + water (g)	M ₃	1988,86	1993,05	1980,81	
Saturated and surface dried sample in air (g)	M ₁	1333,13	1381,42	1360,74	1358,43
Oven-dried sample in air M _{4.} (g)	M ₄	1270,51	1316,40	1288,28	1291,73
Water absorption.(weight-%)	w	4,93	4,94	5,62	5,16
Apparent particle density. (Mg/m³)	ρ_a	2,74	2,74	2,74	2,74
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	2,42	2,42	2,38	2,42
Particle density on a saturated and					
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	2,53	2,54	2,51	2,53

Table 2

Moisture content at start,	
----------------------------	--

Test portion

third test portion (Chapter 8.2)

Chilper (Chilper C.2)		
Weight after ? 5 days drying in 40 °C. (g)	M ₆	1265,16
Weight after drying to constant weight in 110°C. (g)	M ₇	1260,92
Weight water content M_6 - M_7 , (g)	M _w	4,24
Maister ratio (weight 94)	мр	0.34

Sample: Light weigt aggregates
Testing conditions: Absolute pressure

50 mbar for 5 hours

Table 1

Test portion Test portion Test portion Average

Particle density and water absorption		a	b	, c	
Pyknometer (empty). (g) + grid	M ₀	718,85	738,30	714,96	
Pyknometer + dry washed sample (g) + grid	M ₅	959,63	971,80	955,85	
Dry washed sample (g)	М	240,78	233,50	240,89	238,39
Pyknometer + saturated sample in water (g) + grid	M ₂	1953,64	1941,61	1924,47	
Pyknometer + water (g) + grid	M ₃	1992,28	1994,08	1987,76	
Saturated and surface dried sample in air (g)	M ₁	530,79	520,64	508,11	519,85
Oven-dried sample in air M _{4.} (g)	M ₄	241,30	241,66	234,13	239,03
Water absorption.(weight-%)	w	119,97	115,44	117,02	117,48
Apparent particle density. (Mg/m³)	ρ_a	0,86	0,82	0,79	0,82
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	0,42	0,42	0,41	0,42
Particle density on a saturated and					
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	0,93	0,91	0,89	0,91

Table 2

Moisture content	at start,
third test portion	(Chapter 8.2)

Test portion

(10)		
Weight after ? 5 days drying in 40 °C. (g)	M_6	288,61
Weight after drying to constant weight in 110°C. (g)	M ₇	288,52
Weight water content M ₆ -M _{7.} (g)	M _w	0,09
Moister ratio. (weight-%)	MR	0,03

Sample: Crushed bricks (modified, 5 h vakuum)

Table 1 Particle density and water absorption		Test portion a	Test portion b	Average
Pyknometer (empty). (g)	M_0	617,7	617,00	
Pyknometer + dry washed sample (g)	M_5	1955,70	1925,10	
Dry washed sample (g)	М	1338,00	1308,10	1323,05
Pyknometer + saturated sample in water (g)	M_2	3730,30	3712,70	
Pyknometer + water (g)	M ₃	2879,00	2879,90	
Saturated and surface dried sample in air (g)	M_1	1653,10	1615,00	1634,05
Oven-dried sample in air M _{4.} (g)	M ₄	1334,90	1305,90	1320,40
Water absorption.(weight-%)	w	23,837	23,669	23,75
Apparent particle density. (Mg/m ³)	ρ_a	2,760	2,760	2,76
Particle density on an oven dried basis . (Mg/m3)	$ ho_{\it rd}$	1,665	1,670	1,67
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	ρ_{ssd}	2,062	2,065	2,06

Table 2

Moisture content at start, third test portion (Chapter 8.2)		Test portion
Weight after ? 5 days drying in 40 °C. (g)	M ₆	1335,7
Weight after drying to constant weight in 110°C. (g)	M_7	1333,9
Weight water content M ₆ -M _{7.} (g)	M _w	1,8
Moister ratio. (weight-%)	MR	0,13

SINTEF

Sample: Crushed bricks (24h in water)

Table 1 Particle density and water absorption		Test portion	Test portion b	Average
Tarticle density and water absorption		a) D	
Pyknometer (empty). (g)	M_0			
Pyknometer + dry washed sample (g)	M ₅			
Dry washed sample (g)	М			0,00
Pyknometer + saturated sample in water_ (g)	M_2	3542,30	3480,20	
Pyknometer + water (g)	M_3	2691,60	2679,10	
Saturated and surface dried sample in air. (g)	\mathbf{M}_1	1648,50	1573,60	1611,05
Oven-dried sample in air M _{4.} (g)	M ₄	1357,30	1284,00	1320,65
Water absorption.(weight-%)	w	21,454	22,555	22,00
Apparent particle density. (Mg/m³)	ρ_a	2,679	2,659	2,67
Particle density on an oven dried basis . (Mg/m3)	ρ_{rd}	1,701	1,662	1,68
Particle density on a saturated and				
surface-dried basis . (Mg/m3)	$ ho_{ssd}$	2,066	2,037	2,05

Ex	pande d	clay lig	htweight a	ggregate 12	-20 mm		APPEN	DIX 6
Unit we	ight in sl	ort and l	ong time acc	ording to BVH	585.11 och A	TB publication	on 2003:1	
AMERICA ADMINISTRAÇÃO A TRANSPORTO DE CARROS D		- CANADARA (ABRIDA), SEBRIA (ABRIDA)		***************************************			all this environment is recombined amount of the street amount of the st	
Test s	ample		mm	Density	kg/m³	kN/m³	Unit weight	(kN/m ³)
Grain	size mi	n	12	ρ comp	2650	Executive contract of the second seco	ANGENERALISMENT OF TAXABLE MARKET OF THE SALE	0,30
Grain	size ma	X	20	ρ bulk (loose)	230	2,3	W _{A,char}	4,19
Mean	value		16	ρ _{grain}	455		γ true (dry)	-3,03
			Ve e e e e e e e e e e e e e e e e e e					
70X404000000000000000000000000000000000	Water	absorpt	ion			U nit weight		
				(Over water	.	Under	r water
	time		Moisture	Mass	Mass	Characteri	Mass	True
(min)	(days)	(Year)	content	$W_{A,t}$	W _{A,char,t}	γchar,t	W _{B,char,t}	γ true
			weight (%)	(kN/m ³)	(kN/m^3)	(kN/m^3)	(kN/m^3)	(kN/m ³)
5	0	0,00	3,72	<u>-</u>	1	-	_	_
120	0	0,00	8,06	J	•	led	_	_
	1	0,00	12,68	-	1	-	₩	-
	30	0,08	40,13	0,9	0,39	3,22	0,87	-1,28
	90	0,25	56,90	1,3	0,55	3,38	1,22	-0,60
	150	0,41	64,67	1,4	0,62	3,45	1,37	-0,28
	180	0,49	65,22	1,5	0,64	3,47	1,43	-0,17
	210	0,58	68,54	1,5	0,67	3,50	1,48	-0,07
	240	0,66	70,84	1,6	0,68	3,51	1,52	0,01
	300	0,82	77,40	1,7	0,72	3,55	1,59	0,15
	365	1	-	<u></u>	0,74	3,57	1,65	0,27
	3650		-	-	1,06	3,89	2,36	1,70
1)	4886	13	117,50	2,7	1,10	3,93	2,45	1,88
	18250	50	-	-	1,29	4,12	2,86	2,70
	29200	80	-	~	1,35	4,18	3,01	2,99
			***************************************	ned after test	in pycnomet	er at 50 mb	ar	erranna a saar a sa
Remarl	c: Text in	italics a	are extrapol	erated results				

APPENDIX - list

1(5) Particle size distribution

2 (1) Excerpt of EN 1097-6

The scope from the standard

3 (16) Pre-testing

SP Vacuum test, 75, 50, 30 mbar and 1, 5 and 24 hours

IBRI atmospheric pressure, pre-drying and boiling

4 (9) Parallel testing

SP, IBRI, SINTEF:

50 mbar and 5 hours (concrete, ash and basalt)

5 (+5) Additional tests

Long term water absorption
Other materials for comparison (granite, blast furnace slag and crushed bricks)

6 () Modelling of final water absorption of light weight aggregates according to the Swedish Road Authority

Enhetsvis

Enhet/Sektion Prefix Nr	Prefix	Z.	Rubrik	Underrubrik
ELe ELe 8300	SS	629	UTRUSTNING FÖR ARBETE UNDER SPÄNNING	BEST 96-08-26
ELe	SS	643	KOPPLINGSAPPARATER, KOPPI INGSTITETISTAMING	BEST 96-08-26
ELe 8300			MOLI LEGGE LACOLINEAC,	
ELe ELe 8300	SS	649	ELEKTRISKA HUSHÅLLSAPPARATER	BEST 96-08-26
ELE	SS	4 2	ELEKTRISK MÅTUTRUSTNING OCH	BEST 96-08-26
ELe 8300			INDUSTRIELL PROCESSIYRNING	
ELe	SS	919	ELEKTROMEDICINSK UTRUSTNING FÖR	BEST 96-08-26
ELe 8300			MEDICINSKI BRUK	
ELe	SS	629	ELEKTRONISK UTRUSTNING FÖR HEM- OCH	BEST 96-08-26
ELe 8300			KUNTUKSBKUK	