Mätning av intensitetsbrus i lasrar (RIN)
Abstract

Measurement of intensity noise in lasers (RIN)

Noise is an ever-present phenomenon that seriously limits light wave systems performance. Noise is any electrical or optical energy apart from the signal itself and can and does occur in every part of the system. Relative Intensity Noise (RIN) is a common way of expressing the quality in a light-wave system and its component.

The main achievement of this work has been to investigate and evaluate different approaches of measuring Relative Intensity Noise in two semiconductor laser structures and a HeNe-laser.

This report gives a short description of the different methods. Furthermore it describes one procedure more closely. The electrical noise characteristics of the 1.5 µm laser diodes and the 632 nm HeNe-laser have been studied experimentally using this method.

Key words: Relative Intensity Noise, RIN

SP Sveriges Provnings- och Forskningsinstitut
SP Rapport 2000:16
ISBN 91-7848-815-x
ISSN 0284-5172
Borås 2000

SP Swedish National Testing and Research Institute
SP Report 2000:16

Postal address:
Box 857,
SE-501 15 BORÅS, Sweden
Telephone: +46 33 16 50 00
Telex: 36252 Testing S
Telefax: +46 33 13 55 02
E-mail: info@sp.se
Förord

Vi vill uttrycka vår tacksamhet till all personal vid avdelningen på Mått och Vikt för deras hjälp och stöd. Särskild vill vi tacka doc. Leslie Pendrill, vår handledare på SP, för att ha introducerat oss i den intressanta värdelen av optoelektronik. Sist men inte minst vill tacka Dr. Anne Andersson Fälldt för att givit oss friheten att använda fiberlaboratoriet och tillgång till nödvändigt apparatur, samt för hennes stöd och uppmuntran.
Sammanfattning

I dagens samhälle blir det allt viktigare med lågbrusiga lasrar. Att ha en lågbrusig laser är viktigt inom en rad olika tillämpningsområden t.ex. för bredbandiga digitala och analoga höghastighets kommunikationssystem, miljö- och laserspektroskopi. Därför är det viktigt att noggrant kunna bestämma laserbruset.
Måta bruset går att göra på en rad olika sätt. I denna rapport presenteras ett antal olika sätt. Utifrån dessa metoder har en metod framtagits och mättningar på två halvledarlasrar (1550nm) och en HeNe-laser (632nm) har genomförts.
Måtvärden överförs till en PC, vari MathCad används för att genomföra de nödvändiga beräkningarna för att få fram Relative Intensity Noise (RIN). Måtvärdena presenteras sedan i grafen RIN i förhållande till frekvens upp till 20 GHz.
Vad man kunnat utläsa ur dessa diagram är att RIN klingar av med ökad optisk effekt. Den för halvledarlasrar karakteristiska relaxationssvängningen planar ut samtidigt som relaxationssvängningsfrekvensen ökar när optiska effekten höjs.
RIN värden för HeNe-lasern ligger på ca. −120 dB/Hz vid 0,5 GHz och 24 µW optiskt effekt för att sedan klinga av till ca. −145 dB/Hz vid 2,5 GHz och 66,6 µW optiskt effekt.
RIN för Intun lasern typiskt lägre än − 140 dB/Hz för effekter vid 1 mW och högre.
RIN värden för Ericsson 1550 lasern ligger på ca. −100 dB/Hz vid relaxationstoppen (4,5 GHz) för att sedan klinga av till ca. −140 dB/Hz vid 20 GHz. Den optiska effekten var konstant 1 mW.
1 Inledning

De senaste fyrtio årens forskningar kring ljuset har lett till häpnadsväckande upptäckter. Ljuset har visat sig ha egenskaper som lett till tidigare otänkbara tillämpningar. Detta i sin tur har fått stora konsekvenser både inom industrin och ute i samhället. Ljuset rör sig med en hastighet som utgör gränsen för det möjliga. Genom att t ex använda ljuset som bärare av information, kan man överföra stora informationsmängder med största möjliga snabbhet.

I dag lever vi (ofta omedvetet) omgiven av fascinerande teknologi. För alla, som är lite intresserade av framtiden och kanske science fiction, är den snabba och intensiva utvecklingen av opto- och laserteknik fantasieggande.

Numera används laserljus i optisk telekommunikation, lasershows, CD-spelare, m.m. Laserns användningsområden tycks vara oändliga.

Åtskilliga problem, såsom förusteri i överföringen genom dämpning, ljuskällans storlek och arbetstemperatur mm, har man varit tvungen att övervinna. För att nå nuvarande nivå i utvecklingen har omfattande forskning riktats mot laserstrukturen. Den begränsande faktorn i detta sammanhang är laserns intensitetsbrus, dvs. effektvariationer i ljussignalen, som är den största bruskällan i ett transmissionssystem. Dessa effektvariationer försämrrar betydligt signalbrusförhållandet (SNR). Därmed försämras hela överföringssystemets prestanda.

Kunskap om laserns egenskaper och karakteristik är en viktig del i den tekniska utvecklingen. En viktig parameter vid karakterisering av både laser och system prestanda är "Relative Intensity Noise" (RIN). RIN är ett relativt nytt tillkommnet hjälpmedel för detta ändamål. Det beskriver brussegenskaper hos lasrar och omgivande elektronik, m.a.o. kan det sägas vara ett kvalitetsmätt på lasern.

Med låg RIN lasrar kan t.ex. molekyl- och laserspektroskopii göras ännu noggrannare, öka lagringskapaciteten i CD-ROM skivor, etc.

Rapporten ger en helhetsbild av hur laserbrus uppkommer samt hur detta mäts. Denna rapport inleds med en kort princip beskrivning för detektorer och ljuskällor (kap. 2) och följer av en allmän redogörelse för brus, vilka typer det finns samt var och hur dessa uppkommer i mätsystemet. I kapitel 4 återges olika måtmetoder för RIN. Detta åtföljs av en beskrivning av hur mätningar genomfördes samt dessa mätningars resultat.
2 Ljuskälla och detektor

2.1 Lasern

För att lättare kunna förstå vad intensitetsbrus i lasrar är och hur det uppstår, ges här en kort princip beskrivning för hur lasrar fungerar.

2.1.1 Princip beskrivning

Det finns flera olika typer av laser. Det lasrande medium (aktiva medium) kan vara gas, vätska, kristall eller halvledare.
Enligt kvantmekanikens lagar besitter alla partiklar diskreta energiinivåer. Det lasrande medium har i sitt grundläggande energi E_1 och i existerande tillstånd energi E_2. Övergång mellan dessa energiinivåer innefattar absorption eller emission av en foton med energi:

$$h\nu = E_2 - E_1$$

där h är Plancks konstant och ν är strålningsfrekvensen.
Laserns funktion bygger på att man åstadkommer betingelser som möjliggör stimulerad emission, dvs. en foton orsakar att en existerad elektron återgår till grundläggande tillståndet och som därmed frigör en ny foton. Denna foton kommer att ha samma fas, frekvens och riktning som den utlösende fotonen.
Processen förstärks genom att man skapa en resonanskavitet med hjälp av reflektierande ytor. Fotoner kan återflukta till och tillbaka i kaviteten och ge upphov till flera fotoner. Fotonen lämnar kaviteten med eljest transmission genom kavitetspeglarna, vilket ger en smal, intensiv, monokromatisk, koherent stråle av ljus.
Strålingen inne i kaviteten åstadkommer en ständiga våg som beror på avståndet (L) mellan speglarna. Endast vissa frekvenser av strålingen resulterar i en ständiga våg inuti denna volym. Resonans sker när ett helt antal (m) halva våglängder får plats mellan speglarna, dvs. endast när L är lika med m antal $\lambda/2$.
Således blir:

$$L = m \cdot \lambda/2$$

$$L = \frac{m \times c_0}{2n\nu}$$

där $m = 1, 2, 3, \ldots, \infty$
$n =$ brytningsindex i kaviteten ($n = 1$ för gaslasrar)
$L =$ kavitets längd
$\nu =$ frekvens
$c_0 =$ ljusets hastighet i vacuum
Det finns därför ett oändligt antal längsgående kavitetsmoder, var och en med en
distinktiv frekvens v_m. På varandra följande moder är följaktligen åtskilda med en
konstant differens, definierad som fria spektra område FSO (Δv).

$$v_m = \frac{mc_0}{2Ln} \quad [1.]$$

$$FSO = \Delta v = \frac{c_0}{2Ln} \quad [2.]$$

Även om antalet kavitetsmoder är oändligt, är det verkliga antalet som förstärks begränsat
av det aktiva medium förstärknings profil.
Alla typer av laser fungerar enligt samma princip ("Lasers and Electro-Optics", C.C.
Davis; "Optics", E. Hecht).

2.1.1.1 Stimulerad emission

Som bekant alstras och försvinner elektromagnetisk strålning genom ömsesidig påverkan
med materia, varvid energitillsändet i materialet förändras. Man kan ha absorption,
spontan emission och stimulerad emission av strålning. De tre interaktionstyperna är
skisserade i Figur 1.

![Diagram](image)

Figur 1: Energinivå diagram.

Det finns följaktligen två olika emissionsprocesser som sker simultant i det lasrande
medium.
När en elektron faller spontant från en högre energinivå till en lägre avges en foton.
Fotonen kommer att ha en slumpmässig riktning och godtycklig polarisation. Fotonerna i
den avgivna strålen har inget särskilt fastförhållande till varandra, ljuset är oordnat (icke
koherent). Detta fenomen kallas för spontan emission (b i Figur 1).
Vid stimulerad emission (c i Figur 1) växelverkar en inkommande foton med materialet så
att en övergång från en högre energinivå till en lägre energinivå sker under avgivande av
en foton. Den avgivna fotonen är en exakt kopia av den stimulerande fotonen (som
bevaras).

2.1.2 HeNe-laser

I en HeNe-laser utgörs det lasrande medium av en gasblandning bestående av helium och
neon. Denna laser var den första gaslaser som kom att användas och även den första CW
(Continuous Wave) lasern ("Lasers and Electro-Optics", C. C. Davis).
I princip består den av en urladningslampa med gasblandningen (ljusförstärkare),
placerad mellan två speglar (resonanskavitet). Urладningen i urladningsröret åstadkoms
antingen genom excitation med hjälp av DC-spänning eller med hjälp av radiovågor (RF).
När emissionsprocessen sätter igång kommer endast fotonerna som färdas längs kavitets axel att stanna kvar och reflekteras fram och tillbaka genom det lasrande medium.

I våra experiment användes SP: s lasermätstation, där riksmetern realiseras. Ljuskällan i detta lasersystem utgörs av en frekvensstabiliserad HeNe-laser, som emitterar ljus av frekvens 473 612 214,8 MHz, våglängd 632 991 398,1, med en total relativ osäkerhet av $\pm 1 \cdot 10^{-9}$ ("Lasermätstation för upprättande av längdenheten", L. Pendrill).

2.1.3 Halvledarlaser

![Figur 2 Skiss för en enkel halvledarlaser](image)

2.2 Fotodetektor

Detektorns uppgift är att skapa en elektrisk ström som svar på infallande ljus. Den grundläggande mekanismen bakom detektionsprocessen är absorption av fotonenergin. Detta resulterar i ett hål-elektrontpar, vilket i sin tur alstrar en ström. Fotoströmmen, i_{dc}, är direkt proportionellt mot den mottagna optiska effekten, dvs.,

$$i_{dc} = rP_o$$ \[3.\]

där r är detektorns responsivitet (i A/W) och P_o den optiska effekten.

Detektorn måste kunna detektera mycket låga optiska effekter och omvandla dessa till ström. Följaktligen blir även strömen mycket svag, varför signalen förstärks för att sedan kunna hanteras med vanlig elektronik.
Vanliga krav att ställa på en fotodetektor är liknande de som ställs på dess lasrande motsvarighet. Den bör ha hög känslighet, hög responsivitet och kvantverkningsgrad vid den använda våglängden, tillräckligt bredbandig, lågt brus och hög tillförlitlighet. Strömmen som alstras när fotonerna träffar fotodetektorn kan uttryckas med hjälp av detektorns kvantverkningsgrad (\(\eta \)) enl.:

\[
i_{dc} = \eta \cdot \frac{P_o q}{h \nu}
\]

Responsiviteten kan då omformuleras till följande ekvation:

\[
r = \frac{\eta q}{h \nu} = \frac{i_{dc}}{P_o}
\]

där \(q \) är elektronladdningen och \(h \) är Plancks konstant.
3 Brus

3.1 Allmänt

Brus är ett alltid närvarande fenomen och uppkommer i alla komponenter i ett system. Bakgrundstrålningen, som man inte kommer ifrån, ger upphov till små detektionsströmmar. I optiska sammanhang kan man dock för det mesta bortse ifrån dessa.
Termiskt brus, även kallat Johnson eller Nyquist noise, är en fundamental brustyp som förekommer i all elektronik.
En annan väsentlig brustyp är hagelbrus. För ett system, dvs. från ljusälla till analysator (se Figur 5), är vid en given temperatur det termiska bruset vanligtvis konstant medan hagelbruset är direkt beroende av den optiska effekten.
Den tredje och mest bidragande brustypen är intensitetsvariationer i lasern. Detta brus harrör framför allt från spontan emission.
Dessa tre, i systemet förekommande, brustyper kan i sin tur delas upp i två kategorier: överkottbrus (excess noise) och verkligt kvantbrus (intrinsic quantum noise) ("Terminal electrical noise in semiconductor lasers", P.A. Andrésson).
Överkottbruset kan indelas i två grupper: intensitets fluktuationer (AM noise) och frekvens fluktuationer (FM noise). Överkottbruset inkluderar t.ex. brus orsakat av extern optiskt återkoppling och brus pga. att lasern arbetar i multimod.
I denna rapport har endast intensitetsbruset undersömts.
Ursprunget till kvantbruset kan betraktas som statistisk foton alstring.
En viktig skillnad mellan dessa två kategorier är att det i princip är möjligt att undvika överkottbrus. Kvantbrus däremot är omöjligt att undvika, men det går i allmänhet att hålla det under kontroll.
Brusträffar i hög grad systemets känslighet. Fastän bruset är mycket svagt jämfört med signalnivån i de flesta kretsar, är det signifikant i relation till de svaga detekterade signalerna.
Relative Intensity Noise är ett verktyg för att uttrycka bruset i ett system.

3.2 Relative Intensity Noise

RIN är kvoten mellan den genomsnittliga intensitetsvariationen och den elektriska medeleffekten och anges ofta i dB/Hz. Den kan betraktas som en sorts invers signal/brus förhållande.
Systemets RIN kan uttryckas i termer av detekterade elektriska effekter och är den linjära additionen av dessa. De elektriska effekterna som detekteras harrör från tre fundamentala bruskällor, laser intensitetsbrus, termiskt brus och hagelbrus.

\[
RIN_{sys} = \frac{N_{sys}}{P_{avg}} = \frac{N_{th}}{P_{avg}} + \frac{N_{q}}{P_{avg}} + \frac{N_{L}}{P_{avg}}
\]

där \(RIN_{sys}\) är systemets totala RIN i Hz\(^{-1}\),
\(N_{sys}\) är systemets totala bruseffekt i W/Hz,
N_a är det termiska brus bidraget i W/Hz,
N_q är hagelbruseffekten i W/Hz,
N_f är laserns intensitetsbruseffekten i W/Hz
P_{ave} är den elektriska medeleffekten i W.
RIN är en begränsande faktor i försök att uppnå bra S/N-förhållande.

3.2.1 Laserintensitetsbrus

RIN$_{laser}$ beskriver fluktuationen av den optiska effekten. Dessa variationer i laserns effekt beror på olika faktorer. Vibrationer från underlaget, variationer i matningseffekten från högspänningsaggregatet, samt små förändringar i kaviteten (se kap. 2.1.1) p.g.a. temperaturvariationer kan ge upphov till intensitetsvariationer. Den dominanta orsaken till intensitetsbrus i lasrar är dock spontan emission eller snarare ofullständigt inverterad population (se kap. 2.1.1).

RIN har utvecklats som ett uttryck för laserbruset. Därmed är RIN av intresse för lasertillverkarna som ett kvalitetsmått på lasern, dvs. karakterisering av lasern. Kunskap om RIN är av vikt för en rad olika användningsområden, såsom analog- och digital telekommunikation, miljö- och laserspektroskopi mm.

![Graph showing absorbance vs frequency](image)

Figur 3: visar hur brus, som finns överlagrat på en signal, begränsar ett mätssystems kännlighet i att kunna detektera och kvantifiera CO$_2$ molekyler.

Brus som uppkommer i lasrar har på sistone fått påtaglig uppmärksamhet, då det slutligen sätter ett gränsvärde på systemets prestanda.

Utgående ljus från alla lasrar uppvisar, i mer eller mindre grad, fluktuationer i intensitet, fas och frekvens även om matningsströmmen är konstant och med försombara strömvariationer. Intensitets variationer leder till ett begränsad SNR. Fluktuationer i fas, däremot leder till begränsad (ändlig) spekttrallinjebredd. I våra experiment har endast laserns intensitetsbrus studerats (ingen hänsyn har tagits till fluktuationer i fas). Fotodetektorn omvandlar effektvariationerna ifrån lasern till variationer i strömi. Detta brus summeras till hagelbruset och det termiska bruset.
\[RIN_L = \frac{N_L}{P_{avg}} \]

[4.]

3.2.2 Termiskt brus

Det termiska bruset kan beräknas med hjälp av följande uttryck:

\[i_n^2 = \frac{4kTB}{R_L} \]

där \(k \) är Boltzmanns konstant, \(T \) är temperaturen i grad kelvin och \(B \) är detektorns bandbredd.

Termiskt brus kan också yttra sig i form av mörkerström från detektorer. Detta uppkommer p.g.a. termiskt existerande hålelektropar och läckströmmar som passerar PN-övergången och ökar med ca. 10% för varje grads temperaturökning ('"Technician’s Guide to Fiber Optics", D. J. Sterling, Jr.). Detta sker oavsett om det faller ljus på detektorn eller ej.

Vi har, i enlighet med de studerade mätmetoderna, valt att eliminera det termiska bruset genom att subtrahera en mätning med ljus av från en mätning med ljus på (detta skildras närmare i kapitel 4.3).

Vi väljer därför att beskriva det termiska bruset med dess motsvarighet i \(RIN \), enl.:

\[RIN_{Th} = \frac{N_{Th}}{P_{avg}} \]

3.2.3 Hagelbrus

En viktig bruskälla i en PIN-diod är hagelbrus, vilket uppkommer p.g.a. ljusets diskreta natur och kan betraktas som statistisk foton alstring.

Ljus är inte ett homogen fliande utan ett flöde av individuella, diskreta fotoner. Om vi håller kvar i minnet att en detektor fungerar genom att en absorberad foton skapar ett hålelektropar, vilket i sin tur leder till en extern elektron flyter som ström.

Detta är en sekvens i tre steg: fotom, hålelektropar och elektron.

Ankomsten av en foton, absorption av varje foton och skapande av bärare är delar i en slumpmässig process, dvs. inte ett homogen fliande utan snarare en serie diskreta händelser. Följaktligen varierar den verkliga strömmen med variation av hålelektropar som bildas vid varje givet ögonblick.
RIN för hagelbruset räknas ut på följande sätt (optiskt):

\[RIN_q = \frac{2h\nu}{P_0} \]

För att ange RIN\(_q\) med elektriska enheter används följande uttryck:

\[RIN_q = \frac{N_q}{P_{\text{avg}}} = \frac{2q}{i_{dc}} \]

Med hjälp av ekvation 3 kan den elektriska medeleffekten (\(P_{\text{avg}}\)) härledas.

\[P_{\text{avg}} = (rP_0)^2 R = i_{dc}^2 R \] \[5.\]

Således blir hagelbruseffekten:

\[N_q = 2qrP_uR = 2qi_{dc}R \] \[6.\]

där \(R\) är impedansen i systemet.
4 Olika metoder för RIN mätning

4.1 Enkel RIN mätning med laser på och av

Det klart enklaste sättet att snabbt bestämma RIN på ett system och dess komponenter är att, med hjälp av en lämplig detektor och elektrisk spektrumanalysator, mätta de elektriska effekterna när lasern på respektive av. Detta kan göras över olika frekvensområden och olika optiska effekter.

Det som mäts med laseren av är den termiska bruseffekten, N_{th}, och med laseren på systemets totala bruseffekt, N_{tot}.

Hagelbruset, N_p, beräknas teoretiskt genom att använda ekvation 6. Laserbruseffekten, N_L, kan nu enkelt räknas fram genom att från systemets totala bruseffekt (N_p) subtrahera den termiska bruseffekten (av) och hagelbruseffekten. Det som återstår är laserbruseffekten i W/Hz. För att få RIN$_L$ (Hz$^{-1}$) dividerar man laserbruseffekten med den genomsnittliga elektriska effekten (5).

Man kan lika gärna mäta spänningsarna och utifrån dessa räkna ut effekterna. Resultatet anges ofta i dB/Hz genom att ta 10-logaritmen av detta värde och multiplicera med 10.

Vi har genomgående arbetat med elektriska enheter (se anmärkningar, kapitel 9.2).

4.2 Användning av dämpanordning vid RIN mätning

Genom att subtrahera M_3 från M_1 respektive M_2 elimineras det termiska bruset.

$$N_1 = M_1 - M_3$$ \hspace{1cm} $$N_2 = M_2 - M_3$$
Det som återstår är laserbruseffekten och hagelbruseffekten för den dämpade resp. odämpade mätningen.

\[N_1 = N_L + N_q \]
\[N_2 = \frac{N_L}{A^2} + \frac{N_q}{A} \]

Ur dessa båda ekvationer löses sedan \(N_L \) och \(N_q \) ut, vilket ger:

\[N_q = \frac{N_1 - A^2 N_2}{1 - A} \]
\[N_L = \frac{A N_1 - A^2 N_2}{1 - A} \] [7.]

där \(A \) är dämparens dämpningskoefficient, vilket är \(\frac{1}{\text{genomsläpphet}} \).

För att erhålla laserns RIN måste värdena divideras med den totala elektriska effekten uppmätt av spektrumanalysatorn. Denna effekt beror på detektorns överföringsfunktion \(H(f) \). Överföringsfunktionen kan erhållas genom kalibrering eller räknas fram med hjälp av det uppmätta hagelbruset.

\[P_0 = H(f) P_{\text{opt}} \]
\[N_q = H(f) (2q\Delta f/r) P_{\text{opt}} \]

\(\Delta f \) är bandbredden (1Hz)

Ur de tidigare ekvationerna kan den elektriska effekten räknas fram:

\[P_0 = N_q P_{\text{opt}}/(2q\Delta f/r) \]

RIN för lasern ges då av följande uttryck:

\[\text{RIN} = \frac{N_L}{P_0} \]

I ett försök att genomföra mätningar med denna metod erhölls följande resultat.

![Graph](image)

Figur 4: RIN uppmätt enl. vår tolkning av Photonics

På X-axeln visas frekvens i Hz och Y-axeln visar RIN för lasern resp. hagelbrus i dB/Hz. Mätningen gjordes på en halvledarlaser och borde, om inte kavitetsmoder, åtminstone visa en tydlig relaxationssväxling. M.a.o., utseende på grafen blev inte som förväntat. Vid härledning av ekvationerna 7 (se kap. 9.1) kom vi inte fram till samma resultat som

4.3 Vår metod

Figur 5: Generalisering av system för mätning av RIN$_{\text{laser}}$

Figur 5 visar en schematisk bild av uppställningen för mätning av laserns intensitetsbrus. Den består huvudsakligen av en dämpanordning, detektor, förstärkare och en elektrisk spektrumanalysator. Vanligtvis är brusets effekt den parameter som önskas mätas med den elektriska spektrumanalysatorn.

Ljusstrålen från lasern, vars intensitetsbrus skall mätas, leds via en optisk fiber till dämpanordningen. Dämpanordningen (området mellan A och B) har en betydande uppgift, att tilltäta strålningen att passera i fria luften utan att den sprids och att fokusera strålen in i fiber på motsatta sidan. Detta område används för att med lämplig dämpare kunna modifiera lasers optiska uteffekt utan att förändra dess spektrum eller RIN. Laserns optiska uteffekt (P_0) uppmätts före detektor (i punkten B) med en optisk effektmätare.

När ljuset åter är i fiber leds det till fotodetektor som arbetar över laserns spektrala område och omvandlar den optiska effekten till en elektrisk effekt. Denna elektriska effekt förstärks för att sedan visas på en spektrumanalysator. Måtvärdena förs över på en dator vari RIN beräknas.

Mätningar på HeNe-lasern skiljer sig något. Denna är inte fiberkopplad utan går i fria luften fram till detektor. Dämpanordningen bortfaller i detta fall.

Mätning sker i följande steg:

1. Först genomförs en mätning med ljus på (M_1 i dBm/B).

2. Den andra mätningen utförs på samma sätt men nu dämpas den optiska effekten med en lämplig dämpare (M_2 i dBm/B).

3. En sista mätning i serien sker utan optiskt effekt för att eliminera systemets termiska brus (M_3 i dBm/B).

B är den aktuella bandbredden hos spektrumanalysatorn och som inte nödvändigtvis är 1 Hz.

Måtvärdena M_1 till M_3 räknas sedan om till W/Hz.

Genom att subtrahera M3 från M1 respektive M2 elimineras det termiska bruset.

\[N_1 = M_1 - M_3 \quad \quad N_2 = M_2 - M_3 \]

Det som återstår är laserbruseffekten och hagelbruseffekten för den dämpade resp. den odämpade mätningen.

\[N_1 = N_L + N_q \quad \quad N_2 = A^2 N_L + AN_q \]

Ur ekvationssystemet kan laserbruseffekten och hagelbruseffekten löses ut.

\[N_q = \frac{A^2 N_1 - N_2}{A(A - 1)} \quad \quad N_L = \frac{AN_1 - N_2}{A(1 - A)} \hspace{1cm} [8.] \]

där \(A \) är genomsnittslängden hos dämparen.

Det nämnades i kapitel 3 att RIN beskriver ett förhållande mellan bruseffekten och den elektriska medeleffekten.

I kapitel 3.2.3 visas hur hagelbruset räknas fram teoretiskt.

För att få RIN_mätta (4) divideras \(N_L \) (8) med den uppmätta elektriska medeleffekten (5).

Detta värde logaritmeras och plottas mot frekvensen. Mätningarna kan sedan uppprepas vid ett antal olika effekter hos lasern för att få en uppfattning om hur bruset varierar vid olika effekter.

Grafen nedan visar differensen mellan en mätning gjord enligt denna metod och den enkla metoden (på minus av).
Den genomsnittliga skillnaden är i stort sett noll.

4.4 RIN mätning med chopper och lock-in förstärkare

En variant för RIN mätning, som vi fick ta del av, utfördes 1997 på CTH av Per Olof Hedekvist (se litteraturförteckning: 15).

Metoden går ut på att modulera signalen genom att använda en lock-in förstärkare.
Inverkan av det termiska bruset i systemet avlägsnas med hjälp av en periodisk brytare.
(chopper), vilken hackar ljuset som träffar detektorn. Principen är den samma som i avsnitt 4.1. Den väsentliga skillnaden är att differensen mellan brusseffekterna då detektorn är belyst och när den inte är belyst sker fler gånger per cykel, beroende på brytarens pulskvot (duty-cycle).
Denna metod studerades inte närmare då vi inte kunde finna någon lock-in förstärkare som kunde arbeta över tillräckligt stora frekvensområden.

4.5 Tillämpning av referenslaser vid RIN kalibrering

Speciellt för detta ändamål framtagen teknik, som bygger på en lågbrusig referenslaser, gör det möjligt att bestämma brusseffekt hos lasrar med högt precision.
Enligt rapporten har en markant reducering av fel, som bl.a. beror på responsivitet, förstärkning, felanpassning etc., samt en precision på < 0.4dB, uppnåtts.
Det man kan fråga sig är hur man mäter upp sin referenslaser.
För närmare studie av denna mätmetod hänvisas till originalartikeln (se litteraturförteckning: 11).

4.6 Metoder för RIN mätning med HP 71400/1 C

Förutom att ge en hel del bakgrund till RIN mätning och bruskällor, beskriver Hewlett Packard i sin produktpublicering även ingående tillvägagångssätt för RIN mätning.
HP 71400C och HP 71401C konstruerades speciellt för att underlätta utveckling och test av fiberoptiska kommunikationssystem. Instrumenten mäter typiska vågparameter såsom signalstyrka, modulation, bandbredd, distorsion, effekt på reflekterad stråle och brus.
Speciella funktioner för direkt mätning av systemets och laserns RIN finns inbyggda (se litteraturförteckning: 12).
5 Mätning av laserintensitetsbrus

5.1 Mätobjekt

RIN mätningar har utförts på tre olika lasrar.
Mätobjekt (A), en Intun CT 605 E, Snr.: 083, är en fiberkopplad halvledarlaser, tillverkad av Radians Inova, med våglängden 1550 nm. Hos denna laser kunde den optiska uteffekten varieras.
Mätobjekt (B), en analog mätändare 8731, artnr.: LTM 023 501/3, Snr.: 26, är en fiberkopplad halvledarlaser, tillverkad av Ericsson, som lasrar vid 1550 nm. Den optiska uteffekten hos denna laser kunde inte justeras utan var 1 mW.
Mätobjekt (C) är SP: s HeNe-laser, som emitterar ljus vid 633 nm. Denna används på SP, Spnr: 500 902, och är kalibrerad 1999-06-18, bevisnr: 01-F99409.

5.2 Apparatur

För mätningarna av de fiberkopplade halvledarlaserarna användes apparaturuppsättning enl. följande:
- **Detektor** var en HP 83440C med arbetsområde från DC upp till 20 GHz. Dess våglängdsområde var 1000 nm-1600 nm och DC responsiviteten är 0,65 A/W.
- **Förstärkaren** var en Ultra Wideband AFS Amplifier med modell nummer AFS44-00102650-40-10P-44. Förstärkaren arbetade mellan 100 MHz och 26,5 GHz och har en förstärkning på 56,2 A/W.
- **Spektrumanalysatoren** var en Rohde & Schwarz EMI-Test Receiver med frekvensområde 20Hz till 40GHz, SP nr. 503 125 och var kalibrerad 1999-06-15. Referens numret var 20-20345.
- **Optiska effektmätaren** var en HP 8153A Lightwave multimeter med serienr. 2946G01129. SP numret är 501 515 och den var senast kalibrerad 1999-11-01 med bevis nr. 01-F99431.

I uppsättningen med SP:s HeNe-laser användes följande apparatur:
- **Detektor** som användes var en Optoelectronics INC. med inbyggd förstärkare, modell AD110 respektive P5230A, SP nr 600 397. Detektorns serienr. är AD230 03 och förstärkarens är 017. Detektorns och förstärkarens arbetsområde var upp till 800 nm och dess responsivitet 18 A/W.
- **Spektrumanalysatoren** var en Advantest SA R3261A med serienr. 91 720 008 och SP nr. 600 822. Visningsområdet var 9 kHz till 2,6 GHz.
- **Optiska effektmätaren** var en United Detector 351 Power meter. Kalibrering skedde 98-02-04 och bevisnumret var 01-F98039.

5.3 Procedur

Utförande av mätningarna följer de i kapitel 4.3 beskrivna stegen.
Det är viktigt att, innan mätningen påbörjas, aktivera lasern och låta denne stabiliseras.
Det kan röra sig om ca. 30 till 60 minuter, beroende på lasertyp. En viss uppvärmningstid bör också läggas till för elektroniken.
Med tanke på de små dimensionerna hos komponenterna till fiberoptiska system och de svaga signalnivåerna involverade bör även fiberkopplingar, skarvar och kontakter
uppmärksammade, dvs. är de korrekt anslutna, av rätt typ (snedslipade/planslipade
ändytor), rengjorda etc.
Halvledarlasrarna undersöktes i frekvensområdet 100 MHz till max. 20 GHz, vilket var
gränsen för den av oss använda detektorn. Mätningar för Intun upprepades sedan för
optiska effekter mellan 0.4 och 2 mW, medan Ericsson endast mättes vid 1 mW.
HeNe-lasern undersöktes endast i frekvensområdet 100 MHz - 2.6 GHz för effekter
mellan 20 μW och 70 μW.
Vid dämpning av den optiska effekten användes en färgad glasskiva med en
genomsläppighet som beror på våglängden hos lasern. Genomsläppigheten för
dämparen beräknades genom att dividera den dämpade effekten med den odämpade
effekten. Vid 632 nm var genomsläppigheten 35,5 % och vid 1550 nm 43%. Dämparen
placerades i strålningens väg och något lutad för att undvika optisk återkoppling.
Mätdata (M₁, M₂, M₃) fördes över till ett MathCad program, där hagel- resp. laserbruset
beräknades med hjälp av ekvation 8.
6 Resultat

Tidigare RIN kurvor, som vi granskat i olika litteratur, visar RIN över frekvensområden upp till ca. 6 GHz. I våra mätningar har vi haft tillgång till mycket snabba instrument, vilket gör att vi kan visa RIN ända upp till 20 GHz.

Graferna nedan visar RIN laser och RIN hagelbrus (i dB/Hz) vid olika effekter hos lasern. X-axeln visar frekvensen i Hz. RIN_{d} är uppmätt vid lägst optisk effekt och $RIN_{1.5}$ vid högst effekt.

Den för halvedlarlasrar karakteristiska relaxationssvängningen planar ut samtidigt som relaxationssvängningsfrekvensen ökar när optiska effekten höjs.

RIN värden för HeNe-lasern ligger på ca. −120 dB/Hz vid 0,5 GHz och 24 µW optiskt effekt för att sedan klinga av till ca. −145 dB/Hz vid 2,5 GHz och 66,6 µW optiskt effekt.

RIN för Intun lasern typiskt lägre än −140 dB/Hz för effekter vid 1 mW och högre.

RIN värden för Ericsson 1550 lasern ligger på ca. −100 dB/Hz vid relaxationstoppen (4,5 GHz) för att sedan klinga av till ca. −140 dB/Hz vid 20 GHz. Den optiska effekten var konstant 1 mW.

6.1 SP: s Helium Neon laser

![Graph showing RIN over frequency]

Figur 7: RIN laser vid tre olika effekter samt hagelbrus vid 66,6µW för HeNe-lasern

HeNe-lasern var den enda gaslasern i experimentet. Lasern arbetar vid ganska låga effekter. HeNe-lasern undersöks endast i frekvensområdet 100MHz - 2,6 GHz för effekter mellan 20 µW och 70 µW och uppvisar relativt höga RIN värden jämfört med halvedlarlasrarna.
6.2 Intun

![Graph showing RIN laser and hagelbrus at 2.0 mW for Intun](image)

Figur 8: RIN laser vid tre olika effekter samt hagelbrus vid 2.0 mW för Intun

Den första toppen som syns är relaxationssvängningen som typiskt blir lägre samt går mot högre frekvens vid ökad optisk effekt.

De andra topparna beror på resonanskaviteten hos lasern d.v.s. avståndet mellan de refleterande ytorna (1). Efter varandra följande moder är följaktligen åtskilda med en konstant differens, definierad som fria spektrala område (2). Detta har skildrats närmare i kapitel 2.1.1.

I figuren visas även hagelbruset (RINq5) som beräknades för den högsta optiska effekten. Hagelbruset är konstant över hela frekvensområdet och detta är generellt. Hagelbruset beror endast på den optiska effekten.

6.3 Ericsson 1550

![Graph showing RIN laser and hagelbrus at 1 mW for Ericsson 1550 nm](image)

Figur 9: RIN laser och hagelbrus vid 1 mW för Ericsson 1550 nm
På denna laser kunde inte effekten ställas in. Den lasrade endast med 1 mW. Detta gjorde att brusegenskapernas effektberoende inte gick att undersökas närmare. Denna mätning är endast relevant för vid jämförelse av de olika lasrarnas kurvutseende. En tydlig relaxationssvängning kan ses medan resonanstopparna, som syns ganska tydligt hos Intun, saknas.

I och med att vi inte har tillgång till specifikationer om lasrarna, kan vi endast gissa att skillnaden i kurvornas utseende kan tillskrivas till skillnaden i lasrarnas konstruktion (t.ex. extern kavitet, halvledarlaser av typ DFB eller VCSEL).
För att få en uppfattning om RIN mätning har vi studerat olika tillvägagångssätt att bestämma RIN. Metoderna är snarlika. Utifrån dessa har vi utvecklat en metod och genomfört ett antal mätningar på olika lasrar.
Målet var tvåfaldigt, dels att förstå teorin bakom RIN mätning, var bruset uppstår i systemet och hur det kan beräknas och dels att undersöka hur brusegenskaperna förändras för olika lasrar när den optiska effekten varieras. Experimentets uppställning återfinns i kapitel 4.3.
Baserad på studien av de olika metoderna, utvecklade vi en egen metod som beskrivs i kapitel 4.3, som gav förväntade resultat.
Med hjälp av denna metod analyserades två halvledarlaserar och en HeNe-laser.
Måtdatan från våra RIN mätningar bearbetades i MathCad och resultaten presenteras i denna rapport som grafer. RIN åskådliggörs i graferna som funktion av frekvens.
Vad man kan utläsa ur dessa diagram är den för halvledarlaseren typiska relaxationssvängningen och hur denna minskar vid ökad optisk effekt.
Graferna för Intun visar också tydliga kavitetsmoder som beror på avståndet mellan kavitetsens reflekterande ytor. Kavitetsmoderna, vars periodicitet definieras av laserns fria spektrala område, avtar i amplitude vid ökad optisk effekt.
Ericsson 1550nm saknar dessa moder, vilket kan bero på konstruktionsskillnad, men uppvisar en tydlig relaxationssfrekvens.
HeNe-laseren var den enda gaslasern i experimentet och undersökt i frekvensområdet 100MHz - 2,6 GHz. Lasern arbetar vid ganska låga effekter (μW).
RIN värden för HeNe-lasern ligger på ca. -120 dB/Hz vid 0,5 GHz och 24 μW optiskt effekt för att sedan klinga av till ca. -145 dB/Hz vid 2,5 GHz och 66,6 μW optiskt effekt. RIN för Intun lasern typiskt lägre än -140 dB/Hz för effekter vid 1 mW och högre.
RIN värden för Ericsson 1550 lasern ligger på ca. -100 dB/Hz vid relaxationstoppen (4,5 GHZ) för att sedan klinga av till ca. -140 dB/Hz vid 20 GHz. Den optiska effekten var konstant 1 mW.
"Referenser"

1) "University Physics".
 H. Benson,
 John Wiley & Sons INC., 1995

2) "Measurement Systems",
 J. P. Bentley,
 Longman, 1996

3) "Lasermätstation för upprätthållande av längdenheten",
 Leslie Pendrill,
 SP Rapport 1988:01

4) "Optics", second edition,
 E. Hecht,
 Addison-Wesley Publishing Company

5) "Terminal electrical noise in semiconductor lasers",
 P. A. Andrekson,

6) "Technician's Guide to Fiber Optics", second edition,
 D. J. Sterling, Jr.,
 Delmar Publishers INC.

7) "Fiber-optic communication systems",
 G. P. Agrawal,
 John Wiley & Sons INC., 1992

8) "How to measure relative intensity noise in lasers",
 G. E. Obarski, P. D. Hale,
 Laser Focus World 35(5): 273-277; May 99

9) "Multi-Gigahertz Relative Intensity Noise of an InGaAsP Laser at Cryogenic Temperatures",
 G. E. Obarski, D. R. Larson, R. J. Phelan,

10) "Accurate Characterization of High Speed Photodetectors",
 P. D. Hale, D. L. Franzen,

11) "High sensitivity precision relative intensity noise calibration standard using low noise reference laser source",
 M. C. Cox, N. J. Copner, B Williams

12) "Lightwave signal analysers measure relative intensity noise",
 Hewlett Packard; Product note 71400-1, Aug. 1991

13) "Relative intensity noise measurement",
 Photonetics

14) "Laser-intensity noise measurement",
 newfocus.com

15) "Mätningar av Relative-Intensity noise (RIN) på INTUN",
 P. O. Hedekvist
 Slutrapport INTUN-RIN; utgåva 1.4; 1997-11-03; CTH

16) "Laser and Electro-Optics",
 C. C. Davis

17) Figur 3
9 Bilagor

9.1 Härledning av hagelbrus- och laserbruseffekten

Det nämnades i tidigare kapitel att formlerna för beräkning av hagelbrus och termiskt brus skilde sig något från Photonetics rapporten. Vi har ingen förklaring till denna skillnad men har bett Photonetics om en klargörande förklaring.

Här nedan visas hur vi kommit fram till de formler som användes i vårt experiment.

\[N_1 = M_1 - M_3 \]
\[N_2 = M_2 - M_3 \]

Det termiska bruset har nu tagits bort från systemets sammanlagda brus.
Det som återstår är hagelbrus och laserbrus, odämpad \(N_1 \) och dämpad \(N_2 \).
Vi kan m.a.o. skriva:

\[N_1 = N_L + N_q \quad \text{I.)} \]
\[N_2 = \frac{N_L}{A^2} + \frac{N_q}{A} \quad \text{II.)} \]

Ekvation II ger

\[N_L = A^2 N_2 - A N_q \]
\[N_q = A N_2 - \frac{N_L}{A} \]

Insättning i I ger

\[N_q = \frac{N_1 - A^2 N_2}{1 - A} \]
\[N_L = \frac{A N_1 - A^2 N_2}{A - 1} \]

Jämför med ekvationerna (7) för Photonetics i kapitel 4.2.
9.2 Anmärkningar

Den optiska effekten omvandlas i en detektor till en elektrisk fotoström (I_{DC}) som är proportionell mot P_{opt}.

$$dB_{opt} = 10 \cdot \log\left(\frac{P_{opt1}}{P_{opt2}}\right) = 10 \cdot \log\left(\frac{I_{DC1}}{I_{DC2}}\right)$$

Om vi nu antar P_{el1} och P_{el2} är de elektriska effekterna som genereras av I_{DC1} och I_{DC2}, så är dessa proportionella mot kvadraten på I_{DC}.

$$dB_{el} = 10 \cdot \log\left(\frac{P_{el1}}{P_{el2}}\right) = 20 \cdot \log\left(\frac{I_{DC1}}{I_{DC2}}\right)$$

Märk att dB_{el} talet är dubbel så stor som dB_{opt} talet:

$$dB_{el} = 2dB_{opt}$$

Följaktligen bör det anges om huruvida elektrisk effekt eller optisk effekt används vid beräkningar av dämpning, bitfalsfrekvens, signalbrusförhållande etc. i decibel.