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Abstract

The statistical background for assessment of measurement uncertainty is reviewed,
and related to the recommendations which have recently now been presented by 1SO
and WECC. It is found that the recommendations, although they are now being
introduced as mandatory requirements in laboratory accreditation, are not well-
adjusted, neither technically nor with regard to customer needs, to the area of
testing,

The impact of uncertainty estimates on risk assessments and on comparisons with
conditions for approval is discussed. It is pointed out that as well the distributions of
risk as those of the product properties and test methods should be regarded in a
decision on rational procedures for assessment of uncertainty in testing, Further it is
recommended that information and knowledge is disseminated to the standardization
society.
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Summary

The present ISO- and WELAC-recommendations on how to estimate and declare
uncertainty in test results from accredited laboratories are critically assessed from a
laboratory standpoint.

It is found that the assumptions and theoretical basis for the recommended treatment
of random and systematic uncertainty components are such that the approach may
work well in metrology where many variables are included, and statistical
evaluations can be used extensivelty. The assumptions can always be debated on a
principal level but this is not meaningful for laboratories to pursue however
tempting it may be.

Instead the practical consequences in a typical test assignment are considered. Then
it can be stated that the assumptions behind the recommendations are not compliant
with the technical conditions, and that the way to express uncerfainfy may be
misleading, or even impossible to follow. To achieve quality in the test assignment
the declaration of uncertainty should be adjusted to customers” needs, to
standardization, and to the infended use of the results for comparisons with design
rules and regulations.

Standardization organizations should take on the task to include and integrate
uncertainty declarations in testing standards, taking technology and inteded use into
consideration. Laboratories should produce background material and disseminate it
to accreditation and standardization organizations for an improved view on things in

~ the future.




1 Purpose

Presently there is a strong trend to infroduce quality systems and accreditation in
laboratories. In Europe this trend is largely motivated by the establishing of the
common market, where openness and transparency requires ways for all laboratories
which so desire to get access to the market on equal terms. As regards the treatment
of uncertainty, the requirements of the accreditation bodies have caused considerable
unease among laboratories. In many cases the requirements seem unnatural and not
well fitted for their purpose.In this note some views of a test engineer are expressed
on how uncertainty of test results should be estimated and declared.

The accreditation organisations are in general closely liased with metrology. This
may explain why their requirements regarding uncertainty to a large extent stems
from, and are adjusted to, technology and aims in this field, They are connected to
development work and the strive to understand and successively eliminate causes for
discrepancies in comparisons of national standards, and in the chains of traceability
to industrialty used measuring instruments. Generally, the personnel in a calibration
laboratory consists of highly educated specialist, devoting their time to the
exploration of a few physical entitics. They neced working tools o discriminate
possible differences, and they can afford repeated measurements to get the necessary
background for statistical analysis.

In the testing laboratory, on the contrary, the work is performed by test engineers,
specializing in the properties of products and materials. They use measurements to
evaluate these properties, and to report the results to customers who demand a
guarantee for the correctness of the result, in order to feel sure with regard to product
liability, design requirements etc. Normally they are end users, not interested in
carrying the traceability further, but to use a tolerance limit in discussions with
authorities or commercial partners.

Many industrial sectors have long-standing traditions as regards the expression of
technical data and how to use them for control and design, e.g. in codes and regula-
tions. Few of the users are, or will be, familiar with subtle distinctions, such as error
limit vs standard uncertainty. Therefore the requirements of the accreditation bodies
to use complicated guides, as the ISO/TAG4/WG3 [1], as a universal tool for
assessing and expressing uncertainties in test results may end up with serious
trouble. This was expressed e.g. at the EUROLAB Workshop in December 1992 2],
where the group studies clearly indicated a need for moderation. An indiscriminate
requirement to use the methods of [1] in testing laboratories may cause not only
considerable costs but also severe misunderstandings, which is. indeed not the
intention of quality assurance work,



2 Uncertainty of experimental results

2.1 Basic considerations

The activities in a testing laboratory generally consist of standardized experiments 1o
evaluate, as accurately as is meaningful with regard to economics and safety require-
ments, the properties of materials or components. Then measurements are made of
various quantitics, Bach measurement is afflicted with errors, influencing the end
result. These errors are not known, but there is an uncertainty about their exact
magnitude in each measurement. In standardized testing one can generally state
realistically small limits within which the errors must almost certainly be lying.

In most cases it can be presumed that there is a well-established theoretical
functional relatiohship between the measured quantities, x;, i = 1, N, and the desired
value of a propetty, y,

y = (X1, X9, w0y XN)

If the deviations, errors’, in the measurements of x;, are denoted 3, the deviation in
y can be written, to the first order,

N
dy“;g&

Further, if the limits for §; can be stated as 8, the deviation dy will be at most

N
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Since this formula normally will exaggerate the real deviation of y, partly since the
limits 8 are usually estimated too generously and partly since it is highly unlikely
that all errors are maximal and of the same sign, other methods to express dy have
been suggested, which are based on the theory of statistics.

Assuming that the deviations in x; are due to the fact that they are random variables,
the general formula for combining variances can be used,

N-1
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IIn testing it is meaningful to talk about errors, and true values, contrary to what is the case
in fundamental metrology, since in testing the quantities measured have errors which are
several orders of magnitude bigger than the uncertainties of the corresponding basic
physical entities, as voltage, length and time. Then these entities can be considered as exact
references.




Here G denotes standard deviation and pj; correlation coefficients. In the following it
is presumed, for simplicity in the principal reasoning, that the x; are uncorrelated,
which means that p;; = 0.

If the standard deviations of x; were known the standard deviation of y would be
known. In a practical situation the standard deviations have to be replaced by esti-
mates, s;, from experiments or experience, and the result will be an estimate of Oy,
Sy. Special treatment, not very probable in testing, is required in non-linear cases,
e.g. when df /ox; = 0 locally. In [1] and [10] it is suggested that (2) is used to
determine sy as a standard uncertainty also in cases where not all the x; are random
variables but have constant, unknown errors, and to use the quantity 2sy as a
measure, on a 95 % confidence level, of the uncertainty of y. Theoretically this is
based on the assumptions that y is normal and that Sy = Oy.

The formula (2) combines variances of the distributions of x; to the variance of the
distribution of y. However, the distribution of y is generally not a simple function of
the distributions of x;. Only in the case where all x; are normal, also the distribution
of y is normal, In real life one can be sure that the distributions of x; are not normal,
but limited and of some unknown shape. Then, the distribution of y will not be nor-
mal either, but some limited distribution, and the standard deviation Gy can not,
principally, be used to make predictions about significance levels with the normal
distribution as a basis, particularly when N is small. In practice, it appears that,
except for some extreme situations, which have been discussed in [3] and [4], and
are illustrated below, the distribution of y is nearly normal in its central parts, and
that the confidence level of 95 % for ch is not much affected. This has been
explored in detail by e.g. Dietrich [5].

Consider, as an illustration, a case where all the x; have identical rectangular distri-
butions with unit width, and that alt 8f/8x; = 1. Then, if first N = 2 is chosen, the
convolution of xq and x» will give a triangular distribution for y, as depicted in
Figure 1. Here, 61 = 09 = 1/2+/3, which means that a 1o - limit covers 57 % of the
distribution area while the 2o-limit exceeds the limits of the distribution by 15 %.
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Figure 1. Combination of two rectangular distributions with unit width,



For the resulting distribution oy =42 o, =1/ J6, according to (2). Then, the lo-
level covers 65 % and the 2¢ limit 96 % of the distribution, which is close to the
corresponding figures for the normal distribution. When four rectangular
distributions are combined, the difference between the resulting distribution for y
and a normal distribution with the same o is nearly indistinguishable [5]. The
differences will be ¢ven smaller when more natural distributions than the rectangular
one are chosen.As mentioned, problems may arise when the uncertainty of one of
the x; is dominating. Then, the 26 limit may exceed the sum of dj,, which is, of
course not desirable.

If N equal rectangular distributions are assumed the formulas (1) and (2) yield
dy,, 3N
20 y 2

Hence, the relationship between dypax and 20y increases with the number of terms,
For N=1-3 it is around unity, making the need to use (2) instead of (1) less
important. Still, the percentage of the distribution outside 203, stabilizes very
quickly to approximately 5 %, which should remembered in the sequel of this note.

The importance of the case where one or two terms are dominating, which is usual

in testing, is accentuated by the, also usual , situation where the functional
relationship can be written
N

k
y= nx‘.i .
i=1

Then, some simple calculations give, from (2),
2 N 2
G o ‘
y i=1 Xi

If for some i both ki>1 and O / x; are considerably larger than all other

components, this particular component, and its shape of distribution will be decisive
for the whole situation.

Formula (1) is valid for all cases where maximum error estimates can be made for
all i-values. The use of formula (2) requires that for all i-values the errors of the x;-s
are random variables, and consequently gives the variance of the the error
distribution of y.

As far as the aims and the needs have been decided upon, the choice between (1) and
(2) should be uncontroversial. The recommendation in [1] and {10] to use (2) also
when some of the error components are constant, but unknown within certain
limits, is based on a wish to achieve harmonization, and the need, in metrology, to
add uncertainty components in chains of traceability. The consequences of such a
use of (2) is discussed next.



2.2 The treatment of error components which are not
random variables

When the error of a measured value x; is a random variable, changing with each
experiment within a laboratory, its properties can be investgated and assessed. This
type of error is called a type A uncertainty in [1] and [10] and it is the one which can
be treated rigorously by (2).

In many cases parts of the errors are constant within the laboratory, due to method,
equipment or operator, i ¢ they do not change for consequtive experiments in one
laboratory. They may or may not be variables changing between laboratories. Such
errors are called type B uncertainties in [1] and [10]. The inclusion and treatment of
type B uncertainties as random variables in (2) has been, and is, causing much
debate, and it has to be commented upon also in this note.

Each measurement of a variable contains several errors of type A and/or type B, ic

X=X+ Y m+ Y 8y
; P

where xj¢ are correct values, mj; are constant within the laboratory and g vary
randomly. If the mjj-s which are constant in all laboratories are excluded, which is
an A priori assumption in many measurements related to fundamental metrology,
comparative experiments to find repeatability within laboratories, related to gy, and
reproducibility between laboratories, related to  mj; and g, may be performed
according to e g ISO 5725 [6] to obtain assessments of the effects on y from the
EITor components.

In the following it is presumed, for simplicity in a principal reasoning, that only one
¢~ and one m-component, & and m;j, have to be considered for each i. For a certain
test the total error can then be written as

i=l i=l f]

Here, m; are constant, while €; vary as random variables. A series of experiments in
two laboratories will then yield results according to Figure 2. If a number of
experiments is performed in one laboratory, the results will vary within the range of

the distribution for Z(Bf /ox, ), . The variance of this distribution can be assessed
by the aid of (2), and the coverage canbe givenbye g
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If the mj-s arc the dominating terms and if the estimate of their sum is
underestimated there is a risk that the results of that laboratory are given with too
low levels of uncertainty. Particularly when N is small, say 2 or 3, the risk is
particularly big. In the Appendix this effect is further demonstrated by an example.

| '% Laboratory A
L m; E Coverage level
Correct value
A : Laboratory B
— My R Coverage level
1

Figure 2. Resulis of experiments in two laboratories.

It should be noted here, as was also made in [1], that estimates of limits for &- and
m-errors (type A and type B uncertainties with the nomenclature of [1] and [10]) are
about equally easy, or difficult, to assess in practise, For type A components
standard deviation estimates have usually to be found from sample sizes of around
ten, giving estimates which in themselves have uncertainties with relative standard
deviations of about 10-20 %. For m-components, there is often experience available
cnabling the estimation of limits of m with a comparable confidence. The use of
such estimates (0 make seemingly acurate standard uncertainty estimates for
constant error components, of type B, is discussed in the sequel.

Obviously a safe, but strongly exaggerating way to estimate the influence of the m;-
components would be to add the maximum limit estimates by the aid of (1), This
would function well compared to using (2) and standard uncertainty estimates of
type B uncertainties, when N is small, as was mentioned above. Then no result in
any laboratory would deviate more from the correct value than the stated limits.

The risk to come even close to these limits is, however, very small when N grows,
and particularly for metrology purposes other ways have been explored. A first step
of motivation may be to assume a situation where there is only a number of typc B
errors, and that they are all equal and of the same magnitude, A, but that there is an
even chance that they have plus and minus signs. Then for N=1,2 and 3 the
probabilities for the combined error will be as depicted in Figure 3. Even from this
extreme example it is clear that when more components are added the probability
will be very small for the maximum possible error to occur.
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It has been proposed [1] to extend this kind of reasoning to cases where each
constant m; may be considered as being situated anywhere in a continuous interval,
and not only at the end points. Within this interval it is probable that the m;-values
are different in different laboratories, except when they represent universal errors. In
such cases there is a probability that they have values other than the estimated
limits, and that different universal m;-s are situated at different positions in their
respective intervals. Even if these distributions do of course not exist, the belief in
the probabilities is thought to be possible to quantify as "standard uncertainties"
expressing, more precisely, the belief in finding an actual mj-value, if it were
possible to find, within an interval of plus and minus one "standard uncertainty” in
two cases out of three. This approach does not work in cases of extreme
distributions like the ones in Figure 3. In cases where only a limiting interval for an
mj-value can be assessed, it is recommended in [1] to assume a rectangular
distribution, which is motivated by the assumptions related below. This gives the
"standard uncertainty" as 1/+/3 times the limiting interval, according to the example
above.

Using Bayesian statistics, which is a rigorous, but disputable, formulation of the
above reasoning, and assuming the principle of maximum entropy (equal probability
for all possible values) Weise and Woger [7] have shown that “standard
uncertainties” of type B error components should be estimated and combined just
like standard deviation estimates of type A crrors, with an assumption of
rectangular distributions.This approach, and these assumptions, which are discussed
further in the Appendix, are the ones which form the basis of the [ISO/TAG4/WG3
recommendations [1], and the WECC document 19 [10].
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Figure 3. Resulting error distributions for sums of variables with equal, extreme
error distributions, as & function of the number of variables.
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3 Applicability in testing

The suggested procedure in [1] appears to work well in cases where it has been
possible to test [3], with a considerable number of error components of similar sizes,
This is compliant with the assumptions related above. So, although the suggested
procedure is limited, due to the model assumptions, it has some value through its
capacity of harmonization, and it can produce reasonable results if used with care.

Presently, there are, however, differing interpretations in national codes, e g [3], [8]
and [9], with modifications in relationship to [1]. In e.g. [3] the important case with
one or two dominant systematic uncertainties, which is very common in testing, has
been taken care of explicity.

Hence, to testing laboratories the difficulty is not principal but related to the way the
procedure is implemented and imposed in testing. For instance, the document [1] is
too long to be a practical working document, around 100 pages, which should not be
necessary, and so filled with subjective justifications that strong suspicions are
aroused among straight-forward practicians.

Further, the testing situation is governed by a few natural and important conditions
which are not compliant with the recommended procedure. Testing consists of
measuring a few values, t0 be combined by a formula into an end result. This result
is normally used for comparison with a criterion for approval. The measuremenis are
made by instruments which are periodically checked to be within cerfain error
limits. Hence, in the testing situation

— there is a few, two to four, systematic uncertainties, consisting of stated limits
from periodic checks ("the pressure gauge has a relative error of less than 1 % be-
tween 20 % and 100 % of its measuring range'),

— there are generally no statistical analyses made, and hence type A uncertaintics
occur sparsely or are very small in relationship to the others,

~ one or two of the uncertainties are dominant, and the other ones are one or more
orders of magnitude smaller,

— one knows from experience that the "pseudo-probability” of the uncertainty may
well be similar to that shown in Figure 4. For e.g. load cells, the manufacturer
picks out the best ones for high precision classification. This means that the
relative error of a "1 % cell" is most probably larger than 0,5 %, since those with
a smaller error have been sold as "0,5 % cells”,

— the customer wants a safe error limif, rather than a smal! one, and he does not
want to risk 1o rely systematically on one laboratory, which may be frequently
out of its stated uncertainty due to the chance of having underestimated the
systematic uncertainty.
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All these factors lead to the conclusion that the statement of uncertainty of a test re-
sult, although the result on the level of one significant digit may not differ too much
from the one obtained from [1] or [10], should be evaluated in a much more robust
way, e.g. according to [3], or even with formula (1).

t p()

v ™

-2A -A A 2A

Figure 4. Possible distribution for the error of a commercial measuring instrument.

Further, the result should be expressed in a'way that is not a standard uncertainty,
open to later manipulation, but with limits which are natural for the customer to
believe in as "practically safe". The various practises in giving uncertainties as 1s
values in parentheses is totally unacceptable in testing services, regarding the
structure of customers.

One additional ambiguity is the unrealistic accuracy of the recommended standard
uncertainty estimates. In reality the reliance on rectangular distributions, "two times
out of three bettings” etc must be considered to give "standard uncertainties to the
standard uncertainties”, of the order of 20-40 %, and a correspondingly small
number of equivalent or effective degrees of freedom. If a small number of dominant
uncertainties with considerable built-in uncertainties are combined, the result will
also have a significant uncertainty. Hence, the reliance on a 95 %-level for a k-factor
of 2 is not to be taken literally. If, for example, the combined standard uncertainty,
s, is 20 % too large the coverage factor for 2s is not 95 % but 99 %, and if it is 20 %
too small the coverage factor of 2s is 90 %. If a value, x, is stated, according to the
recommendation as e.g.

x=234510.76

with 0.76 expressing a 2s uncertainty. on the 95 % level, based on type B estimates,
this is thought to be in most cases misleading. At most, the result should be possible
to statc as :

x=235108

"with only a few percent risk of having the true value outside this interval”. In [3],
where a 99 % level has been chosen, this has been considered, and it is stated that
the confidence level is such that not more than one or two estimates of one hundred
should be in excess of the given limits,
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The way of expressing the uncertainty is one example of the conditions of quality in
testing services, namely the need for a user-adjusted quality concept, which may
include even subjective elements. It is not only the obvious condition of a correct
result which has to be fulfilled. It is imperative that the testing assignments

— are performed as efficiently as possible, i.e. quickly and at a low cost

— are performed with a high service level, Among other things this means that the
customer shall have a report which can be easily understood and used in each
specific industrial area, considering its tradition, level of standardisation and
other needs. This includes a relevant statement of uncertainty.

With this in mind it must be stated that it is bad quality, and contradicting the
general aim of quality assurance by accreditation, to impose, however harmonized it
may be, a way of expressing results and uncertainties which risks being
misunderstood or considered difficult and out of the real need.

In testing, the accuracy of a result can be estimated and expressed in principally
different ways which naturally differ from what has been discussed above.

There are test methods, whete the result is a “go/no go" result and not quantitative,
but depending on measured variables. One example is fire testing, where the input
parameter is the furnace temperature as a function of time, and the test result is the
capability of a building element to withstand the fire for a certain amount of time.
The temperature profile is allowed to lie between two limiting curves, and due to the
varying geometries of furnaces of different laboratories etc the reproducibility is
accepied 10 be low. Another example is the testing of safety belts for cars, where
input variables are the impact velocity of the sledge, the properties of a standardized
devmmy (mannequin), and the retardation profile, which is, again, to lie between two
limiting curves. The output is, of course, that the belt shall withstand the test
without "vigible" damage.

For this type of test, such transducers, amplifiers and readout units as those for
temperature, velocity and acceleration shall, of course, be calibrated, or controlled,
to standardized classes of accuracy, but it is totally irrelevant to make analyses of
uncertainty, since the dispersion of properties of test specimens and of the test
conditions are much larger than the measurement uncertainty,

There are also test methods specifying in detail the measurements to be made and
hence also specifying the suitable way to express a significant result. One example
of such a method is the ASTM E 399 [11] for fracture mechanics testing. Here, a
test specimen is to be manufactured, with accurately prescribed dimensions. The
specimen is provided with a fatigue crack, and then loaded to fracture. The accuracy
of the load measyrement, and the way to measure the crack length of the broken
specimen are prescribed, as is the accuracy of a function f(a/w) necessary for evalua-
tion of a parameter
Kic="22 fla/w)

T tew



16

where K is the fracture toughness, P, ;, the fracture load, a the crack length and t
and w geometric measures of the specimen. With such a detailed procedure, which is
not uncommon in standards, the way to express the resulting uncertaintity is more or
less specifying itself, and also explicitly stated in the standard. In the case of fracture
toughness, and many others, the resulting quantity, here K- is a material property
which is a random variable in itself, with a standard deviation which is considerably
larger than the uncertainty of the testing procedure,

A requirement on an accredited laboratory to have as well documented methods as
special routines, e.g. according to [1], for calculating and expressing uncertainties in
reports are hence in most cases redundant. Recommendations like {1] should be
imposed on, or rather disseminated to, those who produce standardized test methods.
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4 Comparison of test results with require-
ments

The uncertainty has to be considered when a test result is to be compared with a
required level for approval. The situation may be illustrated by Figure S.

Product property
» Property , distributions

e

H-&-n
e

— et sl et e e e S ) S — — - et b S— Bt vt e — M— p——— —

Danger distribution
and conventional danger level

. Measurements with
" uncertainty intervals

Figure 5. Relationships to consider when test results are used for safety assessments.

Two levels are shown, The solid line represents the level of the standardized require-
ment. This level is often set to give an "absolute safety". The dashed line denotes a
level where a failure is realistic to expect, or has been experienced to occur. In terms
of the failure distribution g) this level is often of the order of 3-4 standard deviations
above the mean value, i ¢ at a risk level of 1074 - 10-3,
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One of the problems frequently discussed in connection with estimations of uncer-
tainty is that of the acceptance of a single result illustrated in a) - d) of Figure 3. In
a) and b) the result is obviously to be approved and disapproved, respectively. In ¢)
and d) the situation is disputable, but must be resolved in practise. It has been
argued that the customer should be given the "benefit of the doubt”. Against this
may be said that declaration of unduly large uncertainties would constitute an
instrument of competition for the laboratories, which would contradict the general
efforts to increase quality through smaller uncertainties. On the other hand it has
also been said that laboratories with less knowledge tend to neglect uncertainties,
and hence to declare too small uncertainties. One solution would be to agree,
through reproducibility investigations on a reasonable "credit to the customers" for
each type of testing. This is normally used implicitly today in many technical areas.

In Figure 5 ¢) and f) a perhaps even more important case is illustrated. Three, or
another number, samples of a product are tested with a test having a given uncer-
tainty. What decision should be taken as a function of the values of test results (and
uncertainties) as related to the level of approval? In many cases of product testing
the uncertainty is much smaller than the width of the distribution of the property of
the product. Then it is customary to approve the product if all mean values are above
the norm, to require re-testing if one value is below the norm, and to reject the
product if two or more results are below the norm, irrespective of the absolute
positions of the values. In some cases there are no measured results; the test is a
compliance/non-compliance test.

The uncertainty intervals depicted in a) - f) of Figure 5 are those estimated by the
procedures in the sections above. They could have approximate coverage factors of
95-99 %, and they should, much more than is usual, be used either to estimate the
distribution f), for a probabilistic risk assessment together with the danger
distribution g), or for a more direct comparison with this distribution,

In practise, these problems can be simplified by rather evident assessments of the
order of magnitude of the parameters involved. In many cases this is implicit in the
tradition of various areas of technology.

The relationships to consider are the ones between

~ the gap between the two levels, and the coverage of the "danger level”, the
dashed level in Figure 5, which implics knowledge of the width of the
distribution g);

— the width of the uncertainty, and its approximate coverage factor;

- the width and other properties of the distribution f) of the material or product.

Of course, the situation which is most easy to handle is the one when the uncertainty

interval can, with simple means, be shown to be much smaller than both the width

of ) and the gap between the levels. This is very usual in product testing. The
discussion about whether the cases ¢) or d) should be approved or not is not
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resolved by reduction of the uncertainty interval or exact determination of the
coverage factor. That this should be the case is sometimes used as an argument to
use recomendations like [1]. The important thing is to make an estimate which can
be related to the other parameters. Only when they are of the same magnitude it is of
importance to make a detailed assessment of the uncertainty.

So, one conclusion of this section is that the question of how to assess and express
uncertainty can not be discussed, or regulated, in absolute terms. It should be
considered in relationship to the properties tested and to the total risk assessment
procedure. This sounds self-evident but obviously is not.

A second conclusion is that determination of uncertainties and risk assessment
procedures should be integrated in the standardization work, in order to cover the
whole problem in a consistent way. Consequently, the standardization committees,
in addition to laboratories, should be a main target group for information and
influence.
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5 Conclusions and recommendations

The inclusion of the requirement to produce "error budgets”, or analyses of uncer-
tainty, in accredited Iaboratories according to the ISO/TAG 4/WG 3
recommendation, or the WELAC document 19 has aroused considerable opposition
and confusion in the testing society. The objections have not been very well
structured or expressed. At the same time it is of utmost importance to clarify the
situation, since accreditation is spreading quickly as a very expensive, however
necessary instrument for testing laboratories to gain access to the market

In this note an effort has been made to sort things out from the perspective of a test
engineer, with the present situation as a background and with the aim to contribute
to a constructive and conclusive discussion in the accreditation and testing
societies. Up to this point the development has been governed by metrology experts
associated to the accreditation bodies and with strong reference to chemical analysis.

Regarding the background of the theory of the present recommendation the
following has been found. The method to treat all uncertainties in the same way, and
to add them like variances, is not meaningful to criticise as such from the testing
society. The approach is attractive in that uncertainties can be propagated in
traceability chains, and in that it offers a unified approach. Theoretically it is built
on assumptions leading to a statistical model. This is necessary and the assumptions
can always be disputed. The adoption of the assumptions and the model should be
decided by their ability to yield realistic results. In this respect, the recommended
method, with various modifications, has proved to be successfol, under conditions
consistent with the assumptions, i ¢ when there is a large number of uncertainty
components, and when these are of a comparable magnitude. When there are only a
few significant components, and when one or two is dominant, which is usual in
testing, the approach does not work well and has to be modified as in [3].

The implied accuracy of the uncertainty determination, and the recommended way to
express it are thought to be misleading. The uncertainties of uncertainty estimates
are so large in practical cases, that the 95 %, or 99 %, statements are most uncertain.
The way to express the basic result, on the 60 % level as a standard uncertainty, can
be very confusing in quite normal contacts between customers and laboratories. To
express uncertainties with more than one significant digit, and meaning "almost sure
uncertainty limits", can not be recommended in testing.

In testing laboratories, and especially so in connection with accredited testing, the
testing work, and reporting is performed according to documented methods. As a
rule the methods contain specifications which imply the resulting accuracy of the
test result, ofien they also specify how to express the result. These specifications are
agreed between interested parties in industry and authorities, often in committees of
international standardization. It is therefore in many cases redundant to imply
additional requirements on the laboratory level. The needs and desires for a
harmonized approach should result in recommendations to standardization bodies in
the first hand.
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Uncertainty estimates should not be prescribed in absoluie terms or even in a
uniform manner, but be related to the safety levels and the properties of the tested
product. This integration should be handled in the standardization process or during
the development of the test method,

In the present situation it is recommended that

— the testing laboratory society in its discussions with accreditation organizations,

~ through e g EUROLAB, tries to explain the importance of customer adjustment
to QA in testing laboratories, and recommends that the standardization bodies, in
the first hand take on a unified approach to express uncertainty in test results
according io the needs. )

— the laboratories are very careful when they document methods and procedures to
be accredited, so that the needs of customers are not abused, and that they make
emerging anomalies known, so that experience can be used and included in
continued re-assessments of the state of the art.
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Appendix

Consider the case where the testing procedure is such that the result includes one
type A uncertainty which is rectangular in [-1,1] and one type B uncertainty which is
also, with Bayesian statistics, rectangular in [-1,1]. This means that in an ensemble
of laboratories the probability to find a certain magnitude of the type B component
in one laboratory is rectangular in [-1,1].

By the use of the recommendation [1], one of the laboratories in the ensemble would
get the uncertainty as

\fs,,+s,, —JI/«/— l/f) =4/2/3
and the 2s limit for 95% coverage as

25=2,{2/3=1.63

In this example a coverage is then obtained of 1-((2—1.63)/2)2 =0.966 from the
standpoint of the laboratory and the recommendation (sce also Figure 2).

However, for the customer this is true only if for each test he chooses randomly in

the ensemble of laboartories. In the practical situation, where ha has to rely on one
laboratory, verified on the same level as all the others, the situation changes. For
some unltucky customers, using the laboratories where the type B error happens to be
maximum, the coverage is reduced to (2-1.63)/2=0.82, i ¢ in 18 % of the tests the
value given is outside the stated 95% coverage area,

Although the effect is reduced when several error components are present, the
example demonstrates that the principle of adding type A and B uncertainties
according to [1] presumes that the customers” choice of a laboratory is included in
the sampling procedure of each test.
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