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lights

brid Discrete-Finite Element model for continuous and discontinuous beam

embers including nonlinear geometric and material effects

ouckaert, Michele Godio, João Pacheco de Almeida

Novel hybrid discrete-finite formulation enabling coupling with classical FEM

Structure modeled as an assembly of rigid blocks with contact faces

Contact faces modeled with distributed pairs of nonlinear springs

Benchmark validation of buckling behaviour of continuous and discrete systems

Joint geometric and material nonlinearity validated with rocking of a flexible colum
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ract

aper introduces a novel formulation, called Hybrid Discrete-Finite Element (HybriD

method, for modeling one-directional continuous and discontinuous planar beam-li

ers, including nonlinear geometric and material effects. In this method, the structu

eled as a series of distinct rigid blocks, connected to each other through contact pai

uted along the interfaces. Each of those contact pairs are composed of two nonline

irectional springs in series, which can represent either the deformation of the bloc

elves, or the deformation of their interface. Unlike the Applied Element Method,

contact pairs are composed of one single spring, the current approach allows captu

enomena such as sectional deformations or relative deformations between two bloc

sed of different materials. This method shares similarities with the Discrete El

Methods in its ability to model contact interfaces between rigid or deformable unit

oes not require a numerical time-domain integration scheme. More importantly, i

lation resembles that of the classical Finite Elements Method, allowing one to ea

uple the latter with HybriDFEM. Following the presentation of its formulation, th

d is benchmarked against analytical solutions selected from the literature, rangin

the linear-elastic response of a cantilever beam to the buckling and rocking respon

tinuous flexible columns, and rigid block stackings. One final example showcases th

ng of a HybriDFEM element with a linear beam finite element.



Journal Pre-proof

Keywo d,

Nonlin

1. In

Th s.

The n e

necess y

constr ),

cracke al

compo s-

contin es

govern ve

explor

Th e

most ly

model re

presen s,

numer or

micro g-

enizat us

behav h

compu d

strain ly

accou i-

tutive ts

can m c-

ture a 8;

∗Co

Preprin 24
Jo
ur

na
l P

re
-p

ro
of

rds: Discontinuities, Discrete Element Methods, Contact, Applied Element Metho

ear geometry, Nonlinear material

troduction

e modeling of discontinuities is a crucial task in the field of structural mechanic

eed for accurate and reliable modeling techniques for discontinuities arises from th

ity to simulate, among others, the response of structures that are discontinuous b

uction (e.g., masonry), heterogeneous structural elements (e.g., mixed structures

d members (e.g., reinforced concrete), or the interactions between distinct structur

nents (e.g., joints, structural details, etc.) or still soil-structure interactions. Di

uities lead to the presence of interfaces, whose behaviour affects, and in some cas

s, the overall structural behaviour. To tackle this problem, many researchers ha

ed different modeling techniques over the years.

e Finite Element Method (FEM) (Rust, 2015; de Borst et al., 2012), which is th

widely used modeling technique among practitioners in structural analysis, classical

s the structure as a continuous medium. However, when major discontinuities a

t in the structure, this assumption may not be applicable. To model discontinuitie

ous FEM-based modeling techniques exist, which can be classified as either macro-

-modeling approaches (Munjiza and Latham, 2002). Macro-modeling employs homo

ion techniques to model large portions of the structure, averaging the discontinuo

ior as an equivalent continuum (Roca et al., 2010; Cecchi and Tralli, 2012). Althoug

tationally efficient, these methods sacrifice detail in the description of the stress an

distributions (Roca et al., 2010). These FEM techniques cannot hence explicit

nt for system discontinuities, but rather approximate them through nonlinear const

relations assigned to finite elements. For instance, Continuum Damage finite elemen

odel cracks but often consider smeared damage spread over a large portion of the stru

nd are limited in their ability to account for localized damage (Lourenço et al., 199

rresponding author

t submitted to International Journal of Solids and Structures February 10, 20
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et al., 2018). More complex FEM approaches involve interface elements included

esh to account for strong discontinuities (Mark et al., 1993; Pegon et al., 1995; Mo

1999; Zhang et al., 2017) and crack propagation in the material (Swati et al., 2018

ed micro-models use these interface elements in a refined mesh to explicitly accou

e discontinuities in the material, often used to model unreinforced masonry (URM

ures that consist of distinct blocks and mortar. However, this increased level of deta

at a high computational cost due to the need for a refined mesh (Lourenço, 1996).

e Discrete Element Method (DEM) is a family of modeling techniques that intrins

ccounts for the possible discontinuous nature of the structural problem. In the DEM

odel consists of an assembly of rigid units that are in contact through deformable inte

While this method allows for an accurate representation of material discontinuitie

uires a time-stepping algorithm even for solving static or buckling problems, whi

s in a high computational cost, as well as the need for building accurate numeric

s. Different DEM formulations have been presented, among which the Distinct El

Method, initially developed in the field of rock mechanics (Cundall, 1971), and lat

ed to the modelling of structural components, like masonry and reinforced concre

ures (Lemos, 2007, 2019; Sarhosis et al., 2016; Scattarreggia et al., 2022; Baraldi et a

The method is nowadays implemented in the commercial software packages UDE

a, 2022) and 3DEC (Itasca, 2023). Another DEM formulation is the Non-Smooth Co

ynamics Method (Jean, 1995, 1999), initially used for modeling granular flows usin

pherical rigid elements, and next extended to 2D and 3D structural configuration

ularly to the modelling of masonry structures (Chetouane et al., 2005; Dubois et a

Taforel, 2012). The formulation has been implemented in the opensource DEM to

90 (UMontpellier, 2023). The performances of UDEC and LMGC90 were compare

authors against different URM benchmark problems, such as pushover analyses an

istory analyses (Bouckaert et al., 2021, 2022). Some advanced models in which th

te units are modeled with FEM and the interactions between the units are modele

EM have been proposed in the literature to account for deformability of the unit

models are referred to as FEM/DEM models (Baraldi et al., 2016; Smoljanović et a
3
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Pulatsu et al., 2020). However, the CPU time associated to these models makes

lt to model large structures.

alternative approach for modeling discontinuities in structures that shares similar

ith the DEM but is better suited for handling the analysis of large structures in stat

amic problems is to treat the problem as an assembly of rigid units interconnecte

formable interfaces modeled as distributed nonlinear multidirectional springs (Ma

t al., 2018), which can represent material properties, physical discontinuities at th

ces between units, or potential cracks in the structure (Meguro and Tagel-Din, 200

rreggia et al., 2022; Malomo et al., 2020). Various formulations that fall under this d

ion have been proposed in the literature, such as the Rigid Block model (Portioli et a

Portioli, 2020; Orduña, 2017), the Rigid-Body Spring Model (Casolo and Uva, 2013)

pplied Element Method (AEM) (Meguro and Tagel-Din, 1999), which is implemente

commercial software Extreme Loading for Structures (Applied Science Internationa

These methods are particularly interesting because the complete collapse of the stru

an be simulated with a limited number of degrees of freedom (DoFs) at the structur

Tagel-Din and Meguro, 2000, 1999). Another formulation, called the Fiber Conta

nt Method (FCEM), was introduced a few years ago and brings the advantage of i

g multiple nonlinear springs in series at the interface, allowing for the consideratio

tive deformations between blocks made of different materials (Estêvão and Oliveir

Estêvão and Carreira, 2015).

the field of structural and soil mechanics, macro-elements have become a popul

que to capture specific phenomena, including discontinuities, with a reduced comp

al cost. These models use a single element to represent the behavior of large portio

structure. This concept was first introduced for modeling soil-structure interactio

er et al., 2010), and has been since then developed for many other applications i

g discontinuities such as the rocking of structural elements (Avgenakis and Psychar

2019) or for modeling URM structures (Addessi et al., 2014). Equivalent-frame mode

widely-used example of such macro-elements (Penna et al., 2014; Lagomarsino et a

Although these approaches offer reduced computational cost, they also come wi
4
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in detail and the formulation of such elements can become extremely complex whe

nting for many different phenomena.

is research paper introduces a novel approach that can handle discontinuities in stru

called the Hybrid Discrete-Finite Element Method (HybriDFEM). This new metho

s the capabilities of the already existing FCEM method by including nonlinear ge

effects and nonlinear material models. A HybriDFEM model consists of a collectio

id interacting rectangular blocks, making it well-suited for modeling discontinuiti

or between structural elements. It shares similarities with the DEM method in i

to model rigid units through contact interfaces, and with the AEM and FCEM met

that it models contact by means of springs distributed along the units’ interface

te the discontinous nature of this approach, it demonstrates a high level of precisio

roximating the behavior of continuous structures, as it will be shown. One promine

e of the HybriDFEM method is that its formulation recalls explicitly that of the FE

d (de Borst et al., 2012), making it possible to develop coupled models where parts

ructure are modeled using FEM and others with HybriDFEM. In the present contr

, it is tailored for one-directional beam-like member and its use is demonstrated f

atic and buckling analysis of discontinuous structures.

ction 2 describes the implementation of the HybriDFEM method, introducing kin

and static variables, as well as governing equations. The focus is on nonlinear geome

d material effects and the nonlinear solution procedures used to solve static problem

n 3 demonstrates the efficacy of the HybriDFEM method through benchmarks of i

ng complexity. The linear elastic analysis of beams is initially evoked. Exampl

ms made of nonlinear hardening/softening materials are then provided. Next, th

ng analysis of slender and stocky columns and rigid-block assemblies is addressed b

les displaying the effect of the size of the blocks on the resulting critical load. Th

g of a column under P-∆ effects on a rigid foundation is also addressed, showcasin

tential of the present method to capture complex interface boundary conditions. F

a hybrid model combining rigid blocks and classical Timoshenko beam elements

ted as an example, which works as a proof of concept for the possibility to coup
5
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DFEM with classical FEM. This research paper offers new possibilities for analyzin

ures with discontinuities, improving efficiency and accuracy.

briDFEM modelling of beam-like members

lock discretisation

the current state of development of the HybriDFEM method, a planar structure

d into a set of nb rigid blocks along its longitudinal axis. This block discretizatio

s the total number of DoFs at the global level, similarly to what is done in AEM (M

nd Tagel-Din, 1999). All blocks have the same dimensions except the two extremi

, which are truncated at half length to make their reference origin coincide with th

ities of the beam axis (Figure 1). The kinematics of each block is described by

s of freedom (DoFs), two displacements and one rotation, attached to its referen

, which corresponds to its center of mass. This results in a system of 3nb DoFs f

ember, expressed in the global reference system (X,Y, Z) and collected in the vect
3nb . The nodal kinematics of the generic block i are U3i−2, U3i−1 and U3i (Figure 1

e prescribed block discretisation results in a set of nCF = nb − 1 contact faces (CF

en pairs of adjacent blocks. When modeling two-dimensional structures, the conta

between blocks are, in fact, contact lines. However, the term ‘contact face’, whi

erally chosen to indicate the interface between two blocks (Itasca, 2022), anticipat

tension of the HybriDFEM method to 3D. Since the blocks are rigid, the deformatio

only at the CF. Each CF is characterised by 6 DoFs, corresponding to the 3 Do

two contiguous blocks, which are collected into the vector qglob
f ∈ R6 (where th

”f” stands for ”contact face”), expressed in the global reference system (X,Y, Z

omponents qglobf1 , ..., qglobf3 and qglobf4 , ..., qglobf6 represent the kinematics of the first an

block expressed at their reference origins and will be referred to as qglob
fA and qglo

fB

tively.

e localisation matrix Af ∈ R6×3nb relates the DoFs of the blocks to those of the C

e entries of this matrix are equal to 0 except at indexes where a DoF of the structu

ponds to a DoF of the CF, where the entry is equal to 1:
6
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Figure 1: Discretisation of a cantilever beam in nb blocks.

qglob
f = AfU. (

utationally, this operation is identical to what is classically performed in the FE

d via incidence matrices (de Borst et al., 2012).

the examples undertaken in this study (Section 3), the block discretisation generates

of identical blocks, all aligned with each other. In this case, the local reference syste

blocks, oriented along the block’s principal directions, is identical for all blocks, wi

ces that are perpendicular to the axis of the beam-like element (Figure 1). However,

rspective of future developments of the presented method, the derivations carried o

paper are done under the assumption that two adjacent blocks can be unaligned an

ve different dimensions, and with CFs that can take any orientation. In this case, th

eference system of the first block differs from the local reference system of the secon

distinct local reference systems are indicated as
(
xloc,A, yloc,A

)
and

(
xloc,B, yloc,B

)

3.
7
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2: (A) Block kinematics in the local reference system (B) contact pair discretisation of the conta

) Isolated contact pair.

express the nodal kinematics of the contiguous blocks in their local reference system

sformation is performed between the global and local reference systems using th

ing rotation matrix:

T(α) :=




cosα sinα 0

− sinα cosα 0

0 0 1


 . (

ector qloc
f ∈ R6 contains the DoFs of the CF when expressed in the local referen

s of their respective blocks (Figure 2A):

qloc
fA = T(αA) · qglob

fA qloc
fB = T(αB) · qglob

fB , (

A and αB the block orientation with respect to the global coordinate system (X,Y, Z

ontact pair discretisation

ch CF is discretised into a series of nc contact pairs (CPs - Figure 2B). A CP consis

points A and B, coinciding and lying on the CF in the undeformed configuratio

are fixed on the edge of the first and second block, respectively. A bidirectional sprin

cts the point A to the point C, here denoted as the contact point, which in tu

nected by another bidirectional spring to the point B (Figure 2C). The quantiti

d ℓAy (resp. ℓBx and ℓBy) indicate the position of A (resp. B) with respect to th

nce origin of the corresponding block in its local reference system
(
xloc,A, yloc,A

)
(res

8
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3: Local coordinates qloc
f of a contact face and coordinates qc of one of its contact pairs. N.B. t

ference system
(
xloc,A, yloc,A

)
is in general not aligned with the local reference system

(
xloc,B , yloc,B

, yloc,B
)
). The direction of the axis xloc,A (resp. xloc,B) is considered as positive fro

st block’s (resp. second block’s) centroid to point A (resp. B), therefore ℓAx and ℓB

sitive quantities, whereas ℓAy and ℓBy can be positive or negative. Since the bloc

id and points A and B are fixed along their respective block’s edge, ℓAx, ℓBx, ℓAy an

e constant.

ontact pair kinematics

ch CP is described by 8 DoFs: the first three are attached to point A, the next thr

and the last two to C. Said DoFs are expressed in the global reference system an

in the vector qc ∈ R8 (Figure 3), which is subdivided into three sub-vectors qc
A ∈ R

9
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R3, and qc
C ∈ R2, containing the kinematics of point A, B and C respectively. The la

rms qc
C will be condensed for the computations at the structural level. They captu

lative elongations of the spring connected to A with respect to the spring connected

ich offers, for example, the possibility to determine the sectional deformation profi

interface between two blocks made of different materials (Figure 2B).

e kinematics of point A qc
A depend non-linearly on the nodal kinematics of the fir

(Figure 3):

qc
A =




qlocf1 cosαA − qlocf2 sinαA − LAy sin q
loc
f3 − LAx

(
1− cos qlocf3

)

qlocf1 sinαA + qlocf2 cosαA + LAx sin q
loc
f3 − LAy

(
1− cos qlocf3

)

qlocf3


 . (

rly, the kinematics qc
B depend on those of the second block (Figure 3):

qc
B =




qlocf4 cosαB − qlocf5 sinαB − LBy sin q
loc
f6 + LBx

(
1− cos qlocf6

)

qlocf4 sinαB + qlocf5 cosαB − LBx sin q
loc
f6 − LBy

(
1− cos qlocf6

)

qlocf6


 , (

, as represented in Figure 3:

LAx = ℓAx cosαA − ℓAy sinαA

LAy = ℓAx sinαA + ℓAy cosαA

LBx = ℓBx cosαB + ℓBy sinαB

LBy = −ℓBx sinαB + ℓAx cosαB.

wever, it is not possible to derive qc
C solely through compatibility relations, becau

lative elongations of the two springs in series depend on the spring nonlinear const

relations. To derive the relative spring elongations, the total deformation of the C

h directions is required, along with the orientation of the two springs in the deforme

uration. At this point, it is convenient to introduce the concept of basic displac

. They correspond to the minimum amount of kinematic information required to ful
10
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4: Basic displacements of the contact pair and spring elongations. Points A, B and C coincide in t

rmed configuration.

be the deformation state of the springs, and hence they could also be called relati

cements. In other references, the terminology ”natural”(Argyris et al., 1979) or ”l

rains”(Crisfield, 1990) shows up (where ”local” is not used with the same meanin

the current work). Herein, four basic displacements are considered: the two relati

ational CP displacements along X and Y, expressed in the global reference syste

Z), and the rotations of the two springs of the CP with respect to their orientatio

undeformed configuration. They are stored in the vector qbsc ∈ R4 (Figure 4):

11
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qbsc =




qc4 − qc1

qc5 − qc2

qc3

qc6




(

be argued that three basic coordinates are sufficient, instead of four, if one conside

he relative orientation of one spring with respect to the other, at the place of consi

their two respective orientations with respect to the global coordinate system. Th

e investigated in future works.

the context of a nonlinear solution procedure, the incremental relation between th

and local coordinates is needed to construct the tangent stiffness matrix of the stru

s it will become apparent later. These incremental compatibility relations are denote

qbsc/∂qloc
f and written as:

c
)
=

sαA sinαA LAy cos q
loc
f3 + LAx sin q

loc
f3 cosαB − sinαB −LBy cos q

loc
f6 + LBx

nαA − cosαA −LAx cos q
loc
f3 + LAy sin q

loc
f3 sinαB cosαB −LBx cos q

loc
f6 − LBy

0 0 1 0 0 0

0 0 0 0 0 1

(

ular case: linear geometry

e compatibility relations expressed in Equations 4 and 5 are valid even when the bloc

go arbitrarily large displacements. When considering small nodal displacements, on

ep just the constant and linear terms of the Taylor series expansion of those equation

t case, the basic displacements qbsc depend linearly on the displacements of the C

quation 6 (together with equations 4 and 5) is replaced by the following one:

12
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sc = Γlin · qloc
f =




− cosαA sinαA LAy cosαB − sinαB −LBy

− sinαA − cosαA −LAx sinαB cosαB −LBx

0 0 1 0 0 0

0 0 0 0 0 1



· qloc

f . (

is noted that Γlin depends just on geometric properties of the undeformed configuratio

er words, the linearized compatibility relations shown in Equation 8 correspond to th

tation of qc and qbsc in the undeformed configuration.

ontact model

e spring elongations, spring forces, and constitutive relations of each bidirection

are expressed in a reference system aligned with the orientation of the springs. Th

l (or axial) direction refers to the direction perpendicular to the block’s edge, denote

index ”n”, whereas the tangential (or shear) direction is parallel to the block’s ed

enoted by the index ”s”. In particular, the above means that in the undeforme

uration, the normal direction of the spring attached to A (resp. B) is aligned with th

ion of xloc,A (resp. xloc,B).

e relative deformations ∆LAn, ∆LAs, ∆LBn and ∆LBs of the springs fixed to A an

wn in Figure 4, can be computed if qc7 and qc8 are known, and the spring forces ca

tained from spring elongations through constitutive relations. However, qc
C cannot b

ted solely by means of compatibility relations as was done for qc
A and qc

B in equations

The calculation of the relative spring elongations (and consequently the displacemen

two last DoFs of the CP) must be simultaneously based on compatibility, constitutiv

uilibrium conditions.

Compatibility relations

e compatibility equation states that the sum of the elongations of the springs shou

al to the total basic translational deformations of the CP. Expressed in (X,Y, Z), th

13
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ion results in the set of linear equations:

T2(αA + qbsc3 ) ·


∆LAn

∆LAs


+T2(αB + qbsc4 ) ·


∆LBn

∆LBs


 =


q

bsc
1

qbsc2


 , (

2(α) :=


cosα − sinα

sinα cosα


.

Constitutive relations

e springs characterizing each CP can be used either to represent a contact law betwee

nt blocks, or an equivalent material model for the blocks. In the latter case, scalin

ust be used.

a discontinuous structure is simulated, such as a rigid block assembly, springs are use

del the behavior at the interface between two rigid blocks, by assigning a contact la

g the spring forces Fspring = [Fn Fs]
T to the spring elongations ∆L = [∆Ln ∆Ls]

instead, one wishes to model a beam made of a continuous material, point A (resp. B

gned a representative portion of the corresponding block, of dimensions ℓAx×h/nc×
ℓBx × h/nc × b), where as discussed ℓAx corresponds to the half-length of the bloc

s the total height of the section divided by the number of contact pairs, and b is th

of the section. The springs fixed to A and B are used to represent the mechanic

rties of this portion of block. In other words, the entire deformation of the two blo

ns on each side of the CP is simulated by a concentrated deformation of the CP.

g law is defined, asymptotically relating the discrete and the equivalent continuo

ure. The axial and shear strains ε and γ can be derived using the spring elongatio

ical for B):

εA =
∆LAn

ℓAx

and γA =
∆LAs

ℓAx

, (1

om the axial and shear strains, the axial and shear stresses σ(ε, γ) and τ(ε, γ) ca

ived through constitutive relations of the material model. The normal and tangenti

forces Fn and Fs can be derived from the axial and shear stresses over the conta

e area S := h/nc × b:

Fn = σ(ε, γ) · S and Fs = τ(ε, γ) · S (1
14
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Figure 5: Equilibrium of forces at the contact point C.

context of a nonlinear solution procedure, the incremental relation between the sprin

and spring elongations is needed. This relation corresponds to the tangent stiffne

of each pair of normal+tangential springs:

kspring :=
∂Fspring

∂∆L
=




∂Fn

∂∆Ln

∂Fn

∂∆Ls

∂Fs

∂∆Ln

∂Fs

∂∆Ls


 =


knn kns

ksn kss


 (1

the parameters knn and kss represent the tangent normal and tangential behaviour

ring, and kns and ksn reflect a coupling of axial and shear behaviour (dilatancy effects

eral, these parameters vary depending on the spring elongations. When modeling

uous material, they depend on the tangent moduli of the stress-strain relation assigne

material. This abstraction will be used in section 3 to demonstrate the ability of th

d to simulate continuous materials.

15
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ular case: linear springs

a linear spring behaviour (both for A and B) is considered, the matrix kspring ∈ R2

s the normal and tangential deformations ∆Ln and ∆Ls with the corresponding forc

d Fs:

kspring∆L =


knn kns

ksn kss




∆Ln

∆Ls


 = Fspring :=


Fn

Fs


 , (1

the beam is modeled with a linear elastic material, the axial and shear stiffne

eters assigned to the pair of springs attached to A take the form (identical for B):

knn,A =
ES

ℓAx

kss,A = χ
GS

ℓAx

, (1

S is the area of the contact surface between the two portions of block, of dimensio

b, E and G = E/ (2(1 + ν)) are the elastic and shear moduli of the material,

isson ratio, and χ a shear correction factor, typically (6 + 5ν) / (5(1 + ν)) for beam

en, 1997).

Equilibrium relations

e equilibrium condition states that the forces through the springs fixed to A equ

rces through the spring fixed to B, along two perpendicular directions. To satis

rium between each set of springs connected in series, their respective spring forc

,A and Fspring,B must be in equilibrium. This condition is expressed in the glob

nce system with the spring force components pX and pY and reads (Figure 5):

:= T2(αA+qbsc3 )·


FAn (∆LAn,∆LAs)

FAs (∆LAn,∆LAs)


 = T2(αB+qbsc4 )·


FBn (∆LBn,∆LBs)

FBs (∆LBn,∆LBs)


 , (1

expresses the equilibrium condition, directly incorporating the spring constituti

ns.

16
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Internal nonlinear solution procedure

e combination of the compatibility relations expressed in equation 9 and the equili

elations in equation 15 results in a set of two linear (compatibility) and two possib

ear (equilibrium) equations expressed in terms of four unknowns ∆LAn, ∆LAs, ∆LB

LBs. This set of equations is solved by means of a Newton-Raphson procedure, whi

e referred to as the internal nonlinear solution procedure, because it is repeated

load step and iteration of the external nonlinear solution procedure applied at th

level. More details about the nonlinear solution procedures will be given in sectio

ular case: linear springs

hen linear springs are employed, e.g. when modeling a homogenous member wi

ar elastic material, the combination of the compatibility and equilibrium equatio

s in a set of four linear equations:


 T2(αA + qbsc3 ) T2(αB + qbsc4 )

T2(αA + qbsc3 ) · kspring,A −T2(αB + qbsc4 ) · kspring,B




∆LA

∆LB


 =




qbsc1

qbsc2

0

0



. (1

fore, the nonlinear solution procedure at the level of the contact pair is not required

ontact pair equilibrium

hen the internal nonlinear solution procedure reaches convergence, the spring elo

s ∆L, spring forces Fspring, and qc
C are obtained. Since qc

C is known, the relati

tions of the springs attached to A and B, expressed in the global reference system

e derived (Figure 5):

17
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6: Basic forces at the contact point and local resisting forces of one CP at the center of mass of t

cks contiguous.

∆LAX = qc7 − qc1

∆LAY = qc8 − qc2

∆LBX = qc4 − qc7

∆LBY = qc5 − qc8

e basic resisting forces pbsc associated to the basic displacements qbsc can be found b

ishing equilibrium in the deformed configuration (Figure 6):
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pbsc =




pX

pY

pX ·∆LAY − pY ·∆LAX

pX ·∆LBY − pY ·∆LBX



, (1

corresponds to the energy conjugate of the basic displacements defined in equation

o last terms of the vector of basic resisting forces pbsc, i.e. the two resisting momen

nd B respectively, account for the fact that points A, B and C are unaligned in th

ed configuration. They arise from the additional lever arm created when the C

s. The vector pc of resisting forces of the CP, expressed at points A, B and C can b

ed from pbsc and corresponds to the energy conjugate of qc:

pc =




pc
A

pc
B

pc
C


 =

[
−pbsc1 −pbsc2 pbsc3 pbsc1 pbsc2 pbsc4 0 0

]T
, (1

ich pc
C = 0, highlighting the condensation of the variables relative to point C at th

ural level. The resisting forces ploc
c of the CP expressed in the local reference systems

o blocks composing the CF are derived directly from pbsc by establishing equilibriu

undeformed configuration (Figure 6):

=


p

loc
cA

ploc
cB


 =




− cosαA − sinαA 0 0

sinαA − cosαA 0 0

LAy cos q
loc
f3 + LAx sin q

loc
f3 −LAx cos q

loc
f3 + LAy sin q

loc
f3 1 0

cosαB sinαB 0 0

− sinαB cosαB 0 0

−LBy cos q
loc
f6 + LBx sin q

loc
f6 −LBx cos q

loc
f6 − LBy sin q

loc
f6 0 1




· pbsc,

(1

is coherent with the principle of contragradiency in structural analysis, since fro

ions 7 and 19, ploc
c = Γ(qloc

f )T · pbsc. The energy conjugate of the vector ploc
c is

19
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qloc
c describing the CP kinematics from the perspective of the two block’s centroid

er, this vector is trivial, since it is equal to qloc
f for all the CPs on one CF.

ular case: linear geometry

hen nonlinear geometric effects are neglected, equilibrium is established in the und

d configuration, and equation 19 simplifies to:

ploc
c =

(
Γlin

)T · pbsc (2

e resisting actions of one contact face expressed in its local reference system is th

f the contributions of each CP composing the CF:

ploc
f =


p

loc
fA

ploc
fB


 =

∑

c∈CF

ploc
c . (2

e CF resisting forces expressed in the global reference system depend on the orientatio

two blocks contiguous to the CF in its undeformed configuration with respect to th

ntal:

pglob
fA = T(αA)

T · ploc
fA pglob

fB = T(αB)
T · ploc

fB (2

assembling the resisting forces of all the contact faces via the incidence matrices (s

ion 1), one obtains:

Pr =
∑

AT
f p

glob
f , (2

sisting forces Pr of the structure at the global level can be computed. This vector

ergy conjugate of the vector of global displacements U of the structure, and contai

sisting forces of the structure expressed as forces and moments at the centroid of ea

xternal nonlinear solution procedure

e derivations presented in the previous sections give a step-by-step procedure to com

he global resisting forces Pr of the structure from a given set of nodal kinemati
20



Journal Pre-proof

al 

on

ure

Coordinat

 system

Structura

level

Figure ,

with id ar

solutio

U. T e

spring ir

corres a-

tions. e

full pr n

is not ch

load s in

equilib n

refere a

factor nt

study. m

one it e-

ment pt

consta d

forces ic

and b

To ff-
Jo
ur

na
l P

re
-p

ro
ofLocalisation

Compatibility

Change of 

coordinates
Excluding 
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proced

External
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e

(23) (22) (21)

(19)

(18) (17)

(9)(6)

(4 & 5)

(3)(1)

(24 & 25) (27) (26) (29) (30) (28) 

Assembly

Equals

Condensation

l
Structure

Contact 

face (CF)

Contact 

face (CF)

Contact 

pair (CP)

Contact 

pair (CP)

Contact 

pair (CP)
Spring

7: Graphical roadmap for the computation of the static and kinematic quantities of HybriDFEM

entification of the corresponding stiffness matrices as well as of the external and internal nonline

n procedures.

he kinematic variables of the structure, the contact faces, the contact pairs and th

s composing the contact pairs are derived through compatibility equations, and the

ponding static counterparts (energy conjugates) are derived through equilibrium equ

They could have been alternatively derived by the Principle of Virtual Work. Th

ocedure is summarized in Figure 7. When nonlinear effects are included, this relatio

invertible and an iterative nonlinear solution procedure is required to find, at ea

tep or increment i, the nodal displacements U for which the resisting forces are

rium with the external forces λiPref applied to the structure, where Pref is a give

nce load pattern and the applied forces are incremented proportionally to Pref by

λi. Three nonlinear solution procedures were implemented in the scope of the prese

In a classical Newton-Raphson procedure, the load increment is kept constant fro

eration to the other. In a displacement-control procedure, the value of the load incr

is computed such that the nodal displacement of a controlled DoF ”m”, Um, is ke

nt. Finally, in a work-control procedure, the external work performed by the applie

is kept constant. The validity of these three methods in performing nonlinear stat

uckling analyses is demonstrated in what follows.

obtain quadratic convergence of the nonlinear solution procedures, the tangent sti

21
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atrix of the structure is computed at each iteration. This operation starts at th

level, for which the tangent stiffness matrix kspring is shown in equation 12, expresse

espect to (n, s), the normal and tangential axis of the spring. For the springs attache

nts A and B, this stiffness matrix can be expressed in the global coordinate syste

Z). For the spring attached to A, it yields (similar for B):

kA,XY :=


kA,XX kA,XY

kA,XY kA,Y Y


 = T2

(
αA + qbsc3

)
· kspring,A ·TT

2

(
αA + qbsc3

)
. (2

om the expressions of the stiffness matrices of the two springs expressed in the glob

inate system, the stiffness matrix of the contact pair, kc = ∂pc/∂qc can be derived:

=




kc
AA 0 kc

AC

0 kc
BB kc

BC

kc
AC

T kc
BC

T kc
CC




=




kA,XX kA,XY k13 0 0 0 −kA,XX −kA,XY

kA,XY kA,Y Y k23 0 0 0 −kA,XY −kA,Y Y

k13 k23 k33 0 0 0 −k13 −k23

0 0 0 kB,XX kB,XY k46 −kB,XX −kB,XY

0 0 0 kB,XY kB,Y Y k56 −kB,XY −kB,Y Y

0 0 0 k46 k56 k66 −k46 −k56

−kA,XX −kA,XY −k13 −kB,XX −kB,XY −k46 k77 k78

−kA,XY −kA,Y Y −k23 −kB,XY −kB,Y Y −k56 k78 k88




,

(2

3 = kA,XY∆LAX − kA,XX∆LAY

3 = kA,Y Y∆LAX − kA,XY∆LAY

3 = kA,Y Y∆L2
AX + kA,XX∆L2

AY − 2kA,XY∆LAY∆LAX

6 = kB,XX∆LBY − kB,XY∆LBX

6 = kB,XY∆LAY − kB,XY∆LBX

6 = kB,Y Y∆L2
BX + kB,XX∆L2

BY − 2kB,XY∆LBY∆LBX
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7 = kA,XX + kB,XX

8 = kA,XY + kB,XY

8 = kA,Y Y + kB,Y Y

e stiffness matrix of the contact pair is then condensed to express the increment

n between the kinematic and static variables of points A and B only, through kc
AB :

∂qc
AB, with (pc

AB)
T =

[
(pc

A)
T (pc

B)
T
]

(similar for qc
AB):

kc
AB =


k

c
AC 0

0 kc
BC


−


k

c
AC

kc
BC


 · kc

CC ·
[
(kc

AC)
T (kc

BC)
T
]

(2

is stiffness matrix can then be expressed with respect to the local coordinates

F by defining the incremental relation Γc
AB := ∂qc

AB/∂q
loc
f . Similarly to equatio

hich relates ploc
c to pbsc through Γ

(
qloc
f

)
, the matrix Γc

AB relates ploc
c to pc

AB, hen

(Γc
AB)

T · pc
AB:

kloc
c =

∂ploc
c

∂qloc
f

=
∂
(
(Γc

AB)
T · pc

AB

)

∂qloc
f

=
∂
(
(Γc

AB)
T
)

∂qloc
f

· pc
AB + (Γc

AB)
T · ∂p

c
AB

∂qc
AB

· ∂q
c
AB

∂qloc
f

=
∂
(
(Γc

AB)
T
)

∂qloc
f

· pc
AB + (Γc

AB)
T · kc

AB · Γc
AB,

(2

the first term of this equation accounts for nonlinear geometric effects, and the secon

relates to the tangent stiffness of the contact pair in its deformed configuration. Th

t stiffness matrices of all CPs composing a CF can then be assembled to obtain th

ss matrix of the CF expressed in its local coordinate system:

kloc
f =


k

loc
f,AA kloc

f,AB

kloc
f,BA kloc

f,BB


 =

∑

c∈CF

kloc
c , (2
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tter should then be expressed in the global coordinate system:

kglob
f =


T(αA)

Tkloc
f,AAT(αA) T(αA)

Tkloc
f,ABT(αB)

T(αB)
Tkloc

f,BAT(αA) T(αB)
Tkloc

f,BBT(αB)


 . (2

nally, the tangent stiffness matrix of the structure expressed in the global referen

can be assembled:

K =
∑

AT
f k

glob
f Af (3

is tangent stiffness matrix, which accounts for the nonlinear geometric and material e

is recomputed at each iteration in the external solution procedure to achieve quadrat

rgence.

plication examples

inear elastic analysis of beams

e HybriDFEM method is an extension of the FCEM method, whose ability in solvin

elastic problems has already been partially demonstrated (Estêvão and Oliveira, 2015

e sake of completeness, examples of linear elastic analysis have been implemented al

developed HybriDFEM script.

e numerical examples consist of two 3m-long beams with a rectangular cross-sectio

ension h× b = 0.5 m × 0.2 m, subjected to a tip vertical downwards force of 100 kN

are composed of a homogeneous linear elastic material with E = 30 GPa and ν =

differ with respect to the boundary conditions: the first beam (B1) is a cantilev

whereas the second (B2) has an additional support at mid-span (Figure 8).

e benchmark consists of two beams with different levels of discretisation, both

ock and CP level. In particular, for a given CP discretization, the number of bloc

sing the beam is progressively increased and the solution computed by HybriDFE

cked against the solution of a continuous beam element. In particular, the vertic

cement of the free end of the beam is compared with the analytical solution of

henko beam, computed with a shear correction factor of χ = 6/5 (Timoshenko an
24
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8: Axial stresses and deformed shape (×40) of beams B1 (left) and B2 (right) with coarse (15 bloc

Ps) and fine (100 blocks × 100 CPs) discretisation.

1961). Since the problem is linear, the displacements for which the associated resistin

are equal to the applied forces are computed directly by inversion of the stiffness matr

structure. The analytical value of vertical displacement of the free end, compute

the unit dummy force theorem, is equal to δB1 = 14.64 mm for B1 and δB2 = 3.54 m

, which is a statically indeterminate structure.

e results are visible in Figure 9. The percentage error, corresponding to the differen

en the computed and analytical displacement, divided by the latter, reaches 0.00

e finest discretisation of B1, with 100 blocks generating 99 CFs, each divided in

Ps. For B2, the percentage error is −0.48% for the same discretisation. The fa

ybriDFEM predicts smaller displacements than the analytical value for coarse blo

tisation, but larger displacements for coarse CP discretisation, both for B1 and B

ts that a small number of blocks tends to overestimate the stiffness of the beam

as a small number of CPs tends to underestimate it.

e axial stresses in beams B1 and B2 are displayed in Figure 8 for a fine and coar

tisation of 15 blocks × 15 CPs and 100 blocks × 100 CPs, respectively. The analytic

of the maximal axial stress is 36 MPa for B1 and 18 MPa for B2. For B1, th

25



Journal Pre-proof

−20

−15

−10

−5

0

5

10

15

20

R
el
at
iv
e
E
rr
or

[%
]

Figur .

maxim ch

corres as

15.67 is

impor n

was ex ea

associ s,

which

3.2. B

A i-

gate t or

this ex

1)
Jo
ur

na
l P

re
-p

ro
of

101 102

Block discretisation

CP Discretisation

5 CPs

10 CPs

20 CPs

50 CPs

100 CPs

(A)

101 102

Block discretisation

−20

−15

−10

−5

0

5

10

15

20

R
el
at
iv
e
E
rr
or

[%
]

CP Discretisation

5 CPs

10 CPs

20 CPs

50 CPs

100 CPs

(B)

e 9: Influence of the CP and block discretisation on the beam displacement for (A) B1 and (B) B2

al stress was 32.54 MPa for the coarse and 35.46 MPa for the fine discretisation, whi

ponds to an error of −9.61% and −1.5%, respectively. For B2, the maximal stress w

MPa (−12.94%) for the coarse and 17.64 MPa (−2%) for the fine discretisation. It

tant to note that a lower value of axial stress with respect to the analytical solutio

pected since it represents an average of the axial stress over the contact surface ar

ated to each contact pair. Moreover, the model computes the stresses at the CF

does not correspond exactly to the extremity of the beam.

eam with nonlinear material response

nonlinear material model has been thereafter implemented in the beam B1 to invest

he capability of HybriDFEM to capture its response. The material model adopted f

ample is a bilinear axial stress-strain relationship:




σ = εE0 when | ε |≤ εy

σ = fy + α(ε− εy)E0 when | ε |> εy

, (3
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0 = 30 GPa and ν = 0 (similarly to section 3.1), a yield strength in tension an

ession fy = 20 MPa, and five values for the strain-hardening parameter α: 10%

%, -5% and -10%. The first two correspond to a material with hardening behaviou

st two to a material with softening behaviour, and the third value corresponds to a

-perfectly plastic material. The discretisation adopted in this example is 50 blocks

s, which has shown to be a satisfactory compromise between precision and require

tational time, for linear elastic analysis.

downwards vertical load P is applied at the free end of the beam and is controlle

ans of a displacement-control procedure, increasing progressively the rotation of th

leftmost block, next to the first one being fixed in the three directions. The validatio

HybriDFEM code in this example is done by means of a sectional analysis, comparin

rvature of the beam at the leftmost CF and the associated bending moment with th

ical expression of the moment-curvature relation of a beam with rectangular cros

n and bilinear material (Pandit and Srinivasan, 2016):



M∗ = κ∗ when κ∗ ≤ 1

M∗ = 1
2

(
3− 1−α

(κ∗)2

)
+ α

(
κ∗ − 3

2

)
when κ∗ > 1

, (3

M∗ is the moment normalized with respect to the moment at first yield M0

6 and κ∗ is the curvature normalized with respect to the curvature at first yie

2fy)/(E0h).

e κ∗ − M∗ curves obtained by the model for the five values of α are displayed an

red to the analytical ones in Figure 10, showing very satisfactory agreement wi

alytical curves. Convergence studies have been performed to assess the influen

ck and CP discretisation, where the same simulation was run first with a varyin

discretisation with a very fine CP discretisation (200 CPs), then with a varying C

tisation with a very fine block discretisation (200 blocks). It has been observed tha

s sectional analysis, the block discretisation has no influence on the relative err

en the numerical and analytical κ∗ − M∗ curves. Since the number of interfaces

ly related to the number of blocks, the block discretisation only has an influence o
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10: Moment-curvature relation for beam B1 with bilinear material and different values of strai

ing ratio α.

mber of points along the beam at which the value of the curvature can be know

s 11 (A) and (B) show the influence of the CP discretisation for a material wi

ning or softening behaviour, respectively. With 20 CPs or more, the percentage err

ligible. For the hardening material, the error computed for large values of κ∗, whe

all the CPs have yielded, converges back to the percentage error obtained when th

behaves linearly (κ∗ < 1). For the softening material, the relative error increases f

values of κ∗ and lower number of CPs.

uckling analysis of beam-columns

e ability of the HybriDFEM method in modelling geometric nonlinearities is teste

ducting the buckling analysis of beam-columns with different boundary condition

-to-height ratio, and size ratio. In this benchmark, the same linear elastic material

tion 3.1 is used.

e first column that is considered is 4m high and relatively slender, with L/h = 20. Th
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11: Influence of the CP discretisation on the moment-curvature relation for (A) hardening mater

= 10%, and (B) softening material with α = −10%. The block discretisation is the same for

ions (200 blocks).
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section of the beam is squared, with h = 0.2 m. The adopted beam discretisation

me as in section 3.2. Four different boundary conditions are implemented: fixed-fixe

fixed-free (FFr), fixed-pinned (FP) and pinned-pinned (PP). A small perturbation

uced in the column, by means of a constant horizontal force Fh = 10 N to the le

d at mid-height of the column. The horizontal displacement of the node on whi

applied is denoted δ and is monitored throughout the whole simulation. Its initi

when only Fh is applied on the column, is denoted δ0. A monotonically increasin

compression force Fv is then applied on the top of the column, controlled by mea

ork-control procedure (de Borst et al., 2012). The vertical force applied at the la

rged step is compared with the theoretical Euler buckling load Ncr,E = π2EI/L2
f .

e graph in Figure 12 shows, for the 4 different boundary conditions considered, th

se in horizontal displacement, δ−δ0, normalized with respect to δ0, against the applie

al force normalized with respect to the theoretical Euler load. The error between th

um vertical load and the theoretical one is between −3.15% (FFr) and −1.48% (PP

btained buckling modes for each set of boundary conditions are also visible on Figu

reeing with the expected buckling modes of a continuous beam-column.

convergence study was conducted to evaluate the influence of the CP discretisatio

varying the number of blocks. Figure 13 shows the influence of both discretisatio

e relative error between the vertical load obtained at the last converged step wi

t to the theoretical Euler buckling load for the pinned-pinned (PP) slender column.

CP discretisation yields values of the critical load that are significantly lower than th

tical one. From 30 blocks onwards, the relative error does not improve significant

increasing the number of blocks. It is important to note that the maximal load obtaine

ically is the load applied at the last converged equilibrium point in the simulation an

ore also depends on the number of increments chosen for the simulation, since a larg

er of increments allow to get closer to the exact solution. In this case, all simulatio

un in 80 increments. Finally, diminishing the relative size of the beam blocks brin

uckling solution for the discrete system that is closer to the theoretical one for th

uous column. For a column made of 10, or more, blocks, the difference between th
30
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Figure 12: Buckling response of a slender column with different boundary conditions.

ted and estimated value is less than 3% for 10 CPs or more. The influence of the si

blocks with respect to the size of the column becomes particularly visible for colum

up of 6, or less, blocks.

e benchmark was repeated for a relatively stocky column of height 4 m and L/h =

ross-section of the beam is rectangular with h × b = 1 m × 0.2 m. The adopte

tisation and boundary conditions, as well as the applied loading procedure, are th

as for the slender column. Because the column is stocky, its shear deformations becom

egligible compared to flexural ones. Therefore, the critical Euler load taken as

nce for the slender column is no longer valid. In its place the buckling load of

henko beam-column is considered as reference value (Timoshenko and Gere, 1961):

Ncr,T =

√
1 + 4χNcr,E/AG− 1

2χ/AG
, (3

G is the shear modulus and A the cross-sectional area of the column.

e graph in Figure 14 shows the buckling response of the stocky columns for differe

ary conditions obtained with HybriDFEM. The curves clearly show convergence

eoretical Timoshenko beam theory buckling load, indicating that the shear deform
31
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13: Influence of the block size and CP discretisations on the critical buckling load for the pinne

(PP) slender column.

are properly taken into account by the model. The error between the computed an

ted Timoshenko buckling load varies between −2.00% (FFr) and −0.00% (FF). Th

ated buckling modes are visible on the same figure.

uckling analysis of systems of blocks

hile a very fine block discretisation predicts with precision the buckling load of

uous column, the present method also enables to model the buckling behaviour

lock assemblies. In this example, a system of two vertically stacked rigid blocks

L = 0.5 m and square cross-section with h = 0.2 m, hinged at the bottom and top

ered. A small perturbation consisting in a slight initial rotation of the lower block

uced by means of a very small moment M = 10 Nm applied at the block’s centroi

iate the nonlinear geometric behaviour, and an axial load is increasingly applied

p of the stack, by means of a work-control procedure as was done for the continuo

ns.

32



Journal Pre-proof

Th gs

evenly ·
h/n re

Us h

a rota el

et al., al

stiffne

4)

The e

5)

where m

the ax y

an infi e

value nt

spring d
Jo
ur

na
l P

re
-p

ro
of

Figure 14: Buckling response of a stocky column with different boundary conditions.

e axial stiffness of the interface between the two blocks is distributed in n sprin

spread across the interface. All springs are assigned an axial stiffness knn = 1 GPa

presenting the stiffness of the interface.

ing an equivalent analytical model composed of two 0.5 m rigid bars connected throug

tional spring with stiffness kr, the buckling load of the stack can be derived (Challam

2014). For an even number of springs along the interface, its equivalent rotation

ss equals:

kr = knnh
3 1

2n3

n/2∑

i=1

(2i− 1)2, (3

xpected buckling load Ncr of the analytical model can be derived:

Ncr =
4kr
L

=
2knnh

3

L

1

n3

n/2∑

i=1

(2i− 1)2, (3

Ncr = knnh
3/4L = 2000 kN with two CPs, which are located at a distance h/4 fro

is of the blocks, and Ncr = knnh
3/3L = 2667 kN when the interface is represented b

nite number of springs, corresponding to the limit for n → ∞ of equation 35. Th

of the axial load obtained at the last converged step, with HybriDFEM, for differe

discretisations ranging from 2 springs to 200 springs, are shown in Figure 15 an
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15: Buckling load of two vertically stacked rigid blocks, depending on the number of CPs at t

ce.

red with the analytical value expressed in equation 35, along with the buckling shap

two blocks. The numerical values show excellent agreement with the analytical one

lexible column rocking on a rigid foundation

this benchmark the rocking behaviour of a flexible column on a rigid base is inve

d. It shows the ability of the method to capture simultaneously the behaviour of

uous, flexible column, and the behaviour at the interface between a rigid no-tensio

rt and the flexible column. The benchmark is taken from Avgenakis et al. (Avgenak

sycharis, 2017) and consists of a H = 4 m-high column with a square cross-sectio

= 1 m modeled with 40 blocks and 80 CPs per block, and a linear elastic materi

= 0.2 and values of E varying from 0.3 GPa to 100 GPa. The column is place

igid no-tension support, represented by an additional block fixed in the three dire

to which a linear material law with a very high stiffness E0 is assigned in compressio

1000E). Numerically, this corresponds to:
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


σ = 0 and τ = 0 when ε > 0

σ = εE0 when ε ≤ 0

. (3

vertical downwards force N = 2500 kN is applied at the top of the column, alon

horizontal force Fh which is controlled by a displacement-control procedure on th

rizontal displacement ∆h, increased by increments of 5 mm up to 50 cm. Since th

m yields moderate displacements, nonlinear geometric effects are considered.

nsidering the column as a rigid block and neglecting its self-weight, nonlinear kin

analysis yields Fh,max = Nh/2H as the force initiating the overturning of the colum

h,max = h/2 as the maximum top displacement, at which the applied axial for

ger opposes the overturning of the column. A curve descending from (0, Fh,max)

ax, 0) in the ∆h − Fh-plane, which approaches a straight line for relatively slend

ns, represents an envelope curve for all pushover curves obtained for the column whe

flexibility is introduced (Giordano et al., 2020). The latter are represented in Figu

which the values of displacement and force are normalized with respect to Fh,max an

x.

e pushover curves of the column obtained for the values of Young’s modulus rangin

0.3 GPa to 100 GPa are visible in Figure 16. The first part of the pushover curv

a linear behaviour with a stiffer slope for higher values of E. This part corresponds

lumn deforming without losing contact with the support. As soon as the overturnin

iated, contacts between the column and the support are lost and the slope of the cur

decreasing, to finally enter the descending branch of the pushover curve, progressive

ing parallel to the envelope line.

oupling with classical FEM

e element presented in this paper has been developed with the intention to couple

lassical finite elements. To illustrate this feature, the benchmark presented hereabo

reproposed without considering nonlinear geometric effects.

35



Journal Pre-proof

W ll

Hybri 0

CPs, is

compo e

first m e

linear ).

The a te

eleme of

the co e

stress

Th d

top di to

the st el

and th ),
Jo
ur

na
l P

re
-p

ro
of

Figure 16: Rocking response of a flexible column on a no-tension rigid foundation.

ith reference to Figure 17 (A), two different models have been implemented. The fu

DFEM model is the same as the one described above, composed of 40 blocks and 8

except that linear geometry is considered. The HybriDFEM-FEM coupled model

sed of the same support block, followed by ten blocks with 80 CPs representing th

eter of the column. The top block is connected through a rigid-node connection to on

Timoshenko beam element representing the upper three meters (Davis et al., 1972

xial and horizontal forces are both applied at the top extremity of the beam fini

nt. Since the beam element is very simple, in this case one fourth of the height

lumn still needed to be modeled with HybriDFEM to allow for a redistribution of th

es according to Saint Venant’s principle.

e two models have been run with a displacement-control procedure up to a normalize

splacement of 1 and the results are compared in Figure 17 (B). The curves associated

iffer columns show a very good match between the results of the full HybriDFEM mod

e HybriDFEM-FEM coupled model. For the most flexible columns (E = 0.3 GPa
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17: (A) HybriDFEM-FEM coupled and full HybriDFEM model of the column at ∆h = 0.5 m f

0 GPa and (B) Normalized force-displacement curves for both models without nonlinear geomet

sponse of the coupled model yields a stiffer response than the full HybriDFEM mode

erage, the computational time needed for the coupled model was 3.5 to 4 times short

or the full model.

nclusions

this paper, a novel structural analysis method called Hybrid-Discrete-Finite Eleme

d (HybriDFEM) has been presented. It was developed as a reformulation and exte

f the Fibre Contact Element Method (FCEM) (Estêvão and Oliveira, 2015), in whi

ructure is modeled as a set of rigid blocks connected through nonlinear springs di

ed along the contact interfaces. In its current state of development, HybriDFEM ca

one-dimensional beam-like elements in which all the blocks are aligned. However, th

matical developments were carried out anticipating the possibility of having unaligne

(e.g. to model curved structures with discontinuities, like masonry arches). Unli
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pplied Element Method (AEM) (Meguro and Tagel-Din, 1999), the interfaces can b

sed of multiple springs in series, which allow sectional deformations to be captured

ations of the interface to be differentiated from deformations of the material. It h

hown that, by adapting the spring constitutive relations, it is possible to model acc

either continuous members or assemblies of distinct blocks as is done in the Discre

nt Methods. Special care has been taken in developing a formulation that resembl

ssical FEM, in order to allow for coupling of HybriDFEM with finite elements towar

putationally more efficient model nevertheless able to properly model discontinuitie

Section 2, the procedure to derive the global resisting forces of the structure w

ted step-by-step (Figure 7). This procedure computes the resisting forces in the d

d configuration, thus accounting for nonlinear geometric effects. Moreover, it mak

an internal nonlinear solution procedure to satisfy equilibrium of the spring forces

ntact points along the interfaces between blocks. Through this iterative solution pr

, nonlinear material behaviour can be accounted for. The internal Newton-Raphso

n procedure was found to converge within a limited number of steps, typically one

he only exceptions being when contact between blocks composed of different materia

a soft block rocking on a rigid base) and moderate displacements (e.g., post-bucklin

ior of columns) were analyzed. Consequently, the computational cost associated wi

lution scheme, classically adopted in the FEM formulation, is deemed reasonable al

framework.

ter presenting the mathematical derivations of the method, it was validated again

mark examples (Section 3), demonstrating the performance of the method in modelin

uous planar structures as well as structures presenting discontinuities. Starting fro

dation for simple linear elastic beams, its ability to model nonlinear material effec

en demonstrated by modeling the moment-curvature response of a beam with biline

ials with different hardening and softening ratios. The nonlinear geometric behavio

alidated by modeling the buckling of slender and stocky continuous columns and th

ng of an assembly of two rigid blocks with a flexible interface. Both for the continuo

n as for the two rigid blocks, the numerical results showed very good agreement wi
38
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pected analytical values. Then, the rocking behaviour of a flexible column on a rig

including nonlinear geometric effects, was validated against the analytical solution

id-block equivalent. Finally, a first example of coupling of HybriDFEM with a classic

henko beam element (Davis et al., 1972) served as a promising proof of concept f

rpose for which the method was developed. This feature will be mainly explored

works.

rther and ongoing developments of HybriDFEM include the extension to models com

of non-aligned blocks and rigid-node connections to connect different beam-like mem

which would allow curved structures and frames with structural discontinuities to b

ed. A time-stepping algorithm will be implemented to handle dynamic problems an

the dynamic collapse of a structure. Extending HybriDFEM to two-directional mem

block discretization along perpendicular axes) will allow effects such as the shear stre

ition or St-Venant’s principle to be captured. Other promising extensions of the mod

so be investigated, namely the coupling of finite elements with HybriDFEM using no

springs instead of rigid-node connections (to model, e.g., detachment), and the use

advanced FEM formulations (e.g., accounting for geometric and material nonlinea

towards a computationally efficient approach that fully combines the advantages

with a formulation that explicitly models discontinuities.
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