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Highlights

A Hybrid Discrete-Finite Element model for continuous and discontinuous beam-

like members including nonlinear geometric and material effects

Igor Bouckaert, Michele Godio, Joao Pacheco de Almeida

» Novel hybrid discrete-finite formulation enabling coupling with classical FEM

o Structure modeled as an assembly of rigid blocks with contact faces

o Contact faces modeled with distributed pairs of nonlinear springs

o Benchmark validation of buckling behaviour of continuous and discrete systems

» Joint geometric and material nonlinearity validated with rocking of a flexible column
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Abstract

This paper introduces a novel formulation, called Hybrid Discrete-Finite Element (HybriD-
FEM) method, for modeling one-directional continuous and discontinuous planar beam-like
members, including nonlinear geometric and material effects. In this method, the structure
is modeled as a series of distinct rigid blocks, connected to each other through contact pairs
distributed along the interfaces. Each of those contact pairs are composed of two nonlinear
multidirectional springs in series, which can represent either the deformation of the blocks
themselves, or the deformation of their interface. Unlike the Applied Element Method, in
which contact pairs are composed of one single spring, the current approach allows captur-
ing phenomena such as sectional deformations or relative deformations between two blocks
composed of different materials. This method shares similarities with the Discrete Ele-
ment Methods in its ability to model contact interfaces between rigid or deformable units,
but does not require a numerical time-domain integration scheme. More importantly, its
formulation resembles that of the classical Finite Elements Method, allowing one to eas-
ily couple the latter with HybriDFEM. Following the presentation of its formulation, the
method is benchmarked against analytical solutions selected from the literature, ranging
from the linear-elastic response of a cantilever beam to the buckling and rocking response
of continuous flexible columns, and rigid block stackings. One final example showcases the

coupling of a HybriDFEM element with a linear beam finite element.
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1. Introduction

The modeling of discontinuities is a crucial task in the field of structural mechanics.
The need for accurate and reliable modeling techniques for discontinuities arises from the
necessity to simulate, among others, the response of structures that are discontinuous by
construction (e.g., masonry), heterogeneous structural elements (e.g., mixed structures),
cracked members (e.g., reinforced concrete), or the interactions between distinct structural
components (e.g., joints, structural details, etc.) or still soil-structure interactions. Dis-
continuities lead to the presence of interfaces, whose behaviour affects, and in some cases
governs, the overall structural behaviour. To tackle this problem, many researchers have
explored different modeling techniques over the years.

The Finite Element Method (FEM) (Rust, 2015; de Borst et al., 2012), which is the
most widely used modeling technique among practitioners in structural analysis, classically
models the structure as a continuous medium. However, when major discontinuities are
present in the structure, this assumption may not be applicable. To model discontinuities,
numerous FEM-based modeling techniques exist, which can be classified as either macro- or
micro-modeling approaches (Munjiza and Latham, 2002). Macro-modeling employs homog-
enization techniques to model large portions of the structure, averaging the discontinuous
behavior as an equivalent continuum (Roca et al., 2010; Cecchi and Tralli, 2012). Although
computationally efficient, these methods sacrifice detail in the description of the stress and
strain distributions (Roca et al., 2010). These FEM techniques cannot hence explicitly
account for system discontinuities, but rather approximate them through nonlinear consti-
tutive relations assigned to finite elements. For instance, Continuum Damage finite elements
can model cracks but often consider smeared damage spread over a large portion of the struc-

ture and are limited in their ability to account for localized damage (Lourengo et al., 1998;
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Gatta et al., 2018). More complex FEM approaches involve interface elements included in
the mesh to account for strong discontinuities (Mark et al., 1993; Pegon et al., 1995; Moes
et al., 1999; Zhang et al., 2017) and crack propagation in the material (Swati et al., 2018).
Detailed micro-models use these interface elements in a refined mesh to explicitly account
for the discontinuities in the material, often used to model unreinforced masonry (URM)
structures that consist of distinct blocks and mortar. However, this increased level of detail
comes at a high computational cost due to the need for a refined mesh (Lourenco, 1996).
The Discrete Element Method (DEM) is a family of modeling techniques that intrinsi-
cally accounts for the possible discontinuous nature of the structural problem. In the DEM,
the model consists of an assembly of rigid units that are in contact through deformable inter-
faces. While this method allows for an accurate representation of material discontinuities,
it requires a time-stepping algorithm even for solving static or buckling problems, which
results in a high computational cost, as well as the need for building accurate numerical
models. Different DEM formulations have been presented, among which the Distinct Ele-
ment Method, initially developed in the field of rock mechanics (Cundall, 1971), and later
extended to the modelling of structural components, like masonry and reinforced concrete
structures (Lemos, 2007, 2019; Sarhosis et al., 2016; Scattarreggia et al., 2022; Baraldi et al.,
2016). The method is nowadays implemented in the commercial software packages UDEC
(Itasca, 2022) and 3DEC (Itasca, 2023). Another DEM formulation is the Non-Smooth Con-
tact Dynamics Method (Jean, 1995, 1999), initially used for modeling granular flows using
only spherical rigid elements, and next extended to 2D and 3D structural configurations,
particularly to the modelling of masonry structures (Chetouane et al., 2005; Dubois et al.,
2018; Taforel, 2012). The formulation has been implemented in the opensource DEM tool
LMGC90 (UMontpellier, 2023). The performances of UDEC and LMGC90 were compared
by the authors against different URM benchmark problems, such as pushover analyses and
time-history analyses (Bouckaert et al., 2021, 2022). Some advanced models in which the
discrete units are modeled with FEM and the interactions between the units are modeled
with DEM have been proposed in the literature to account for deformability of the units.

Those models are referred to as FEM/DEM models (Baraldi et al., 2016; Smoljanovi¢ et al.,
3



2018; Pulatsu et al., 2020). However, the CPU time associated to these models makes it
difficult to model large structures.

An alternative approach for modeling discontinuities in structures that shares similari-
ties with the DEM but is better suited for handling the analysis of large structures in static
or dynamic problems is to treat the problem as an assembly of rigid units interconnected
by deformable interfaces modeled as distributed nonlinear multidirectional springs (Mal-
omo et al., 2018), which can represent material properties, physical discontinuities at the
interfaces between units, or potential cracks in the structure (Meguro and Tagel-Din, 2000;
Scattarreggia et al., 2022; Malomo et al., 2020). Various formulations that fall under this de-
scription have been proposed in the literature, such as the Rigid Block model (Portioli et al.,
2015; Portioli, 2020; Orduna, 2017), the Rigid-Body Spring Model (Casolo and Uva, 2013) or
the Applied Element Method (AEM) (Meguro and Tagel-Din, 1999), which is implemented
in the commercial software Extreme Loading for Structures (Applied Science International,
2022). These methods are particularly interesting because the complete collapse of the struc-
ture can be simulated with a limited number of degrees of freedom (DoFs) at the structural
level (Tagel-Din and Meguro, 2000, 1999). Another formulation, called the Fiber Contact
Element Method (FCEM), was introduced a few years ago and brings the advantage of in-
cluding multiple nonlinear springs in series at the interface, allowing for the consideration
of relative deformations between blocks made of different materials (Estévao and Oliveira,
2015; Estévao and Carreira, 2015).

In the field of structural and soil mechanics, macro-elements have become a popular
technique to capture specific phenomena, including discontinuities, with a reduced compu-
tational cost. These models use a single element to represent the behavior of large portions
of the structure. This concept was first introduced for modeling soil-structure interactions
(Pecker et al., 2010), and has been since then developed for many other applications in-
cluding discontinuities such as the rocking of structural elements (Avgenakis and Psycharis,
2020, 2019) or for modeling URM structures (Addessi et al., 2014). Equivalent-frame models
are a widely-used example of such macro-elements (Penna et al., 2014; Lagomarsino et al.,

2013). Although these approaches offer reduced computational cost, they also come with
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a loss in detail and the formulation of such elements can become extremely complex when
accounting for many different phenomena.

This research paper introduces a novel approach that can handle discontinuities in struc-
tures, called the Hybrid Discrete-Finite Element Method (HybriDFEM). This new method
extends the capabilities of the already existing FCEM method by including nonlinear geo-
metric effects and nonlinear material models. A HybriDFEM model consists of a collection
of rigid interacting rectangular blocks, making it well-suited for modeling discontinuities
within or between structural elements. It shares similarities with the DEM method in its
ability to model rigid units through contact interfaces, and with the AEM and FCEM meth-
ods in that it models contact by means of springs distributed along the units’ interfaces.
Despite the discontinous nature of this approach, it demonstrates a high level of precision
in approximating the behavior of continuous structures, as it will be shown. One prominent
feature of the HybriDFEM method is that its formulation recalls explicitly that of the FEM
method (de Borst et al., 2012), making it possible to develop coupled models where parts of
the structure are modeled using FEM and others with HybriDFEM. In the present contri-
bution, it is tailored for one-directional beam-like member and its use is demonstrated for
the static and buckling analysis of discontinuous structures.

Section 2 describes the implementation of the HybriDFEM method, introducing kine-
matic and static variables, as well as governing equations. The focus is on nonlinear geomet-
ric and material effects and the nonlinear solution procedures used to solve static problems.
Section 3 demonstrates the efficacy of the HybriDFEM method through benchmarks of in-
creasing complexity. The linear elastic analysis of beams is initially evoked. Examples
of beams made of nonlinear hardening/softening materials are then provided. Next, the
buckling analysis of slender and stocky columns and rigid-block assemblies is addressed by
examples displaying the effect of the size of the blocks on the resulting critical load. The
rocking of a column under P-A effects on a rigid foundation is also addressed, showcasing
the potential of the present method to capture complex interface boundary conditions. Fi-
nally, a hybrid model combining rigid blocks and classical Timoshenko beam elements is

presented as an example, which works as a proof of concept for the possibility to couple
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HybriDFEM with classical FEM. This research paper offers new possibilities for analyzing

structures with discontinuities, improving efficiency and accuracy.

2. HybriDFEM modelling of beam-like members

2.1. Block discretisation

In the current state of development of the HybriDFEM method, a planar structure is
divided into a set of n, rigid blocks along its longitudinal axis. This block discretization
defines the total number of DoFs at the global level, similarly to what is done in AEM (Me-
guro and Tagel-Din, 1999). All blocks have the same dimensions except the two extremity
blocks, which are truncated at half length to make their reference origin coincide with the
extremities of the beam axis (Figure 1). The kinematics of each block is described by 3
degrees of freedom (DoFs), two displacements and one rotation, attached to its reference
origin, which corresponds to its center of mass. This results in a system of 3n;, DoFs for
the member, expressed in the global reference system (X, Y, Z) and collected in the vector
U € R*%. The nodal kinematics of the generic block i are Us; o, Us;_1 and Us; (Figure 1).

The prescribed block discretisation results in a set of ncp = n, — 1 contact faces (CF)
between pairs of adjacent blocks. When modeling two-dimensional structures, the contact
faces between blocks are, in fact, contact lines. However, the term ‘contact face’, which
is generally chosen to indicate the interface between two blocks (Itasca, 2022), anticipates
the extension of the HybriDFEM method to 3D. Since the blocks are rigid, the deformation
occurs only at the CF. Each CF is characterised by 6 DoFs, corresponding to the 3 DoFs
of the two contiguous blocks, which are collected into the vector q?l"b € R® (where the
index "f” stands for “contact face”), expressed in the global reference system (X,Y, 7).

The components qfllOb, ...,q??f"b and quiOb, ...,qé’ﬁl‘)b represent the kinematics of the first and

second block expressed at their reference origins and will be referred to as q?ffb and q?éfb,
respectively.
The localisation matrix Ay € R6*3™ relates the DoFs of the blocks to those of the CF.

All the entries of this matrix are equal to 0 except at indexes where a DoF of the structure

corresponds to a DoF of the CF, where the entry is equal to 1:
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Figure 1: Discretisation of a cantilever beam in n; blocks.

q‘?lOb = AfU (1)

Computationally, this operation is identical to what is classically performed in the FEM
method via incidence matrices (de Borst et al., 2012).

In the examples undertaken in this study (Section 3), the block discretisation generates a
series of identical blocks, all aligned with each other. In this case, the local reference system
of the blocks, oriented along the block’s principal directions, is identical for all blocks, with
interfaces that are perpendicular to the axis of the beam-like element (Figure 1). However, in
the perspective of future developments of the presented method, the derivations carried out
in this paper are done under the assumption that two adjacent blocks can be unaligned and
can have different dimensions, and with CFs that can take any orientation. In this case, the
local reference system of the first block differs from the local reference system of the second.
These distinct local reference systems are indicated as (xl"c’A,yloc’A) and (xlOC’B ,leC’B) in

Figure 3.



Figure 2: (A) Block kinematics in the local reference system (B) contact pair discretisation of the contact

face (C) Isolated contact pair.

To express the nodal kinematics of the contiguous blocks in their local reference system,
a transformation is performed between the global and local reference systems using the

following rotation matrix:

cosa sina 0
T(a) = |—sina cosa 0] . (2)
0 0 1

The vector /¢ € RS contains the DoFs of the CF when expressed in the local reference

systems of their respective blocks (Figure 2A):

aif = T(aa)-afy”  ai = T(ap) - afy’, (3)

with a4 and ap the block orientation with respect to the global coordinate system (X, Y, Z).

2.2. Contact pair discretisation

Each CF is discretised into a series of n. contact pairs (CPs - Figure 2B). A CP consists
of two points A and B, coinciding and lying on the CF in the undeformed configuration.
They are fixed on the edge of the first and second block, respectively. A bidirectional spring
connects the point A to the point C', here denoted as the contact point, which in turn
is connected by another bidirectional spring to the point B (Figure 2C). The quantities
(4, and L4, (resp. lp, and {p,) indicate the position of A (resp. B) with respect to the

reference origin of the corresponding block in its local reference system (z'°>4, y'°=4) (resp.
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Figure 3: Local coordinates q%oc of a contact face and coordinates q. of one of its contact pairs. N.B. the
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is in general not aligned with the local reference system (

Y

loc,A) y

local reference system (

(z'oeB ylo=B)). The direction of the axis #'°>* (resp. z'°>#) is considered as positive from
the first block’s (resp. second block’s) centroid to point A (resp. B), therefore £, and (g,
are positive quantities, whereas ¢4, and ¢p, can be positive or negative. Since the blocks
are rigid and points A and B are fixed along their respective block’s edge, {4, {ps, {4, and

{p, are constant.

2.3. Contact pair kinematics

Each CP is described by 8 DoFs: the first three are attached to point A, the next three
to B and the last two to C. Said DoFs are expressed in the global reference system and

stored in the vector g € R® (Figure 3), which is subdivided into three sub-vectors q% € R?,
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q$ € R3 and q¢ € R?, containing the kinematics of point A, B and C respectively. The last
two terms q¢ will be condensed for the computations at the structural level. They capture
the relative elongations of the spring connected to A with respect to the spring connected to
B, which offers, for example, the possibility to determine the sectional deformation profile
at the interface between two blocks made of different materials (Figure 2B).

The kinematics of point A % depend non-linearly on the nodal kinematics of the first

block (Figure 3):

qﬁ‘l’c cos gy — qé‘g’c sinay — Ly, sin qégc — Ly (1 — COS quc)
c __ . .
Ay = [gi°sinaa + gf° cosaa + Laysingls® — La, (1 — cosqls®) | - (4)
loc
43

Similarly, the kinematics q% depend on those of the second block (Figure 3):

qﬁfjc cosapg — quc sinap — Lp, sin qégc + Lp, (1 — CoS quc)
dp = |gi§°sinap + i cosap — Lp,singlg® — L, (1 — cosgige) | (5)
loc
s

where, as represented in Figure 3:

Lay =Llazcosay — Laysinay
Lay="laysinay + L4, cosay
Lp, = {pycosap + {p,sinap

Lpy = —{pysinap + {4, cos ap.

However, it is not possible to derive q¢ solely through compatibility relations, because
the relative elongations of the two springs in series depend on the spring nonlinear consti-
tutive relations. To derive the relative spring elongations, the total deformation of the CP
in both directions is required, along with the orientation of the two springs in the deformed
configuration. At this point, it is convenient to introduce the concept of basic displace-

ments. They correspond to the minimum amount of kinematic information required to fully
10
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Figure 4: Basic displacements of the contact pair and spring elongations. Points A, B and C coincide in the

undeformed configuration.

describe the deformation state of the springs, and hence they could also be called relative
displacements. In other references, the terminology "natural”(Argyris et al., 1979) or "lo-
cal strains”(Crisfield, 1990) shows up (where "local” is not used with the same meaning
as in the current work). Herein, four basic displacements are considered: the two relative
translational CP displacements along X and Y, expressed in the global reference system
(X,Y,Z), and the rotations of the two springs of the CP with respect to their orientation

in the undeformed configuration. They are stored in the vector q**¢ € R* (Figure 4):
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- qs — 43
q’c = (6)

It can be argued that three basic coordinates are sufficient, instead of four, if one considers
only the relative orientation of one spring with respect to the other, at the place of consid-
ering their two respective orientations with respect to the global coordinate system. This
will be investigated in future works.

In the context of a nonlinear solution procedure, the incremental relation between the
basic and local coordinates is needed to construct the tangent stiffness matrix of the struc-
ture, as it will become apparent later. These incremental compatibility relations are denoted

T := 0q"*¢/0ql°° and written as:

T (a™) =
= cosay sinay L 4, cos qﬁgc + L 4, sin qégc cosap —sinap —Lp,cos qﬁgc + Lp,sing
—sinay —cosay —La,cos qégc + L 4y sin qégc sinag cosagp —Lpg,cos qégc — Lpysing
0 0 1 0 0 0
0 0 0 0 0 1

(7)

Particular case: linear geometry
The compatibility relations expressed in Equations 4 and 5 are valid even when the blocks
undergo arbitrarily large displacements. When considering small nodal displacements, one
can keep just the constant and linear terms of the Taylor series expansion of those equations.
In that case, the basic displacements q”*¢ depend linearly on the displacements of the CF

and Equation 6 (together with equations 4 and 5) is replaced by the following one:

12
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—CcosSty sinay Ly, cosap —sinap —Lp,
- i loe —sinay —cosay —La, sinag cosag —LP* oo
q*=T". g = g (8)
0 0 1 0 0 0
0 0 0 0 0 1

It is noted that T depends just on geometric properties of the undeformed configuration.
In other words, the linearized compatibility relations shown in Equation 8 correspond to the

computation of q° and q”*¢ in the undeformed configuration.

2.4. Contact model

The spring elongations, spring forces, and constitutive relations of each bidirectional
spring are expressed in a reference system aligned with the orientation of the springs. The
normal (or axial) direction refers to the direction perpendicular to the block’s edge, denoted
by the index "n”, whereas the tangential (or shear) direction is parallel to the block’s edge
and denoted by the index ”s”. In particular, the above means that in the undeformed

configuration, the normal direction of the spring attached to A (resp. B) is aligned with the

loc,A ( loc,B) .

direction of x resp. T

The relative deformations AL ,, AL s, ALp, and ALpg, of the springs fixed to A and
B, shown in Figure 4, can be computed if ¢5 and ¢ are known, and the spring forces can
be obtained from spring elongations through constitutive relations. However, q¢ cannot be
computed solely by means of compatibility relations as was done for q% and q% in equations 4
and 5. The calculation of the relative spring elongations (and consequently the displacements

at the two last DoFs of the CP) must be simultaneously based on compatibility, constitutive,

and equilibrium conditions.

2.4.1. Compatibility relations
The compatibility equation states that the sum of the elongations of the springs should
be equal to the total basic translational deformations of the CP. Expressed in (X, Y, Z), this

13



condition results in the set of linear equations:

ALAn ALBn qbsc
To(oa + ¢5°) - + Tolap + ¢5) - =" |, (9)
ALAs ALBs qgsc

_ cosa —sina
with To(a) :=
sina  cosa

2.4.2. Constitutive relations

The springs characterizing each CP can be used either to represent a contact law between
adjacent blocks, or an equivalent material model for the blocks. In the latter case, scaling
laws must be used.

If a discontinuous structure is simulated, such as a rigid block assembly, springs are used
to model the behavior at the interface between two rigid blocks, by assigning a contact law
relating the spring forces Fypring = [F, FS]T to the spring elongations AL = [AL, ALS]T.

If, instead, one wishes to model a beam made of a continuous material, point A (resp. B)
is assigned a representative portion of the corresponding block, of dimensions ¢4, X h/n. x b
(resp. £p; X h/n. x b), where as discussed £, corresponds to the half-length of the block,
h/n. is the total height of the section divided by the number of contact pairs, and b is the
width of the section. The springs fixed to A and B are used to represent the mechanical
properties of this portion of block. In other words, the entire deformation of the two block
portions on each side of the CP is simulated by a concentrated deformation of the CP. A
scaling law is defined, asymptotically relating the discrete and the equivalent continuous
structure. The axial and shear strains € and v can be derived using the spring elongations

(identical for B):

ALy,
N gAx
and from the axial and shear strains, the axial and shear stresses o(e,7) and 7(e,v) can

ALy,

€4 and  y4 = , (10)

gAx
be derived through constitutive relations of the material model. The normal and tangential
spring forces F, and Fs can be derived from the axial and shear stresses over the contact
surface area S := h/n. x b:

F,=o0(g,v)-S and Fs=71(e,y)- S (11)
14
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Figure 5: Equilibrium of forces at the contact point C.

In the context of a nonlinear solution procedure, the incremental relation between the spring
forces and spring elongations is needed. This relation corresponds to the tangent stiffness

matrix of each pair of normal-+tangential springs:

OFy OF,
ko . anpring __ | AL, OALs . knn kns (12>
e OAL OF,  OF, bk
OAL, OAL; sn SS

where the parameters k,, and kg represent the tangent normal and tangential behaviour of
the spring, and ks and kg, reflect a coupling of axial and shear behaviour (dilatancy effects).
In general, these parameters vary depending on the spring elongations. When modeling a
continuous material, they depend on the tangent moduli of the stress-strain relation assigned
to the material. This abstraction will be used in section 3 to demonstrate the ability of the

method to simulate continuous materials.
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Particular case: linear springs
If a linear spring behaviour (both for A and B) is considered, the matrix Kqpying € R2x2

relates the normal and tangential deformations AL, and AL, with the corresponding forces

F,, and Fj:
kspringAL = = Fspring = ; (13)
ksn kss ALs Fs
When the beam is modeled with a linear elastic material, the axial and shear stiffness

parameters assigned to the pair of springs attached to A take the form (identical for B):

ES
knn,A - @
GS

kSS’A = X£—, (14)
Az

where S is the area of the contact surface between the two portions of block, of dimensions
h/n. x b, E and G = E/(2(1 +v)) are the elastic and shear moduli of the material, v
the Poisson ratio, and y a shear correction factor, typically (6 + 5v) / (5(1 + v)) for beams
(Stephen, 1997).

2.4.3. Equilibrium relations

The equilibrium condition states that the forces through the springs fixed to A equal
the forces through the spring fixed to B, along two perpendicular directions. To satisfy
equilibrium between each set of springs connected in series, their respective spring forces
Fopring,a and Fgpine g must be in equilibrium. This condition is expressed in the global

reference system with the spring force components py and py and reads (Figure 5):

Px w FAn (ALAna ALAS) sc FBn (ALBny ALBS)
= To(aa+4¢5)- = Ty(ap+q5™)- , (15)
Py FAs (ALAru ALAS) FBs (ALBna ALBS)

which expresses the equilibrium condition, directly incorporating the spring constitutive

relations.
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2.4.4. Internal nonlinear solution procedure

The combination of the compatibility relations expressed in equation 9 and the equilib-
rium relations in equation 15 results in a set of two linear (compatibility) and two possibly
nonlinear (equilibrium) equations expressed in terms of four unknowns AL 4,, ALas, ALpg,
and ALpg,. This set of equations is solved by means of a Newton-Raphson procedure, which
will be referred to as the internal nonlinear solution procedure, because it is repeated at
every load step and iteration of the external nonlinear solution procedure applied at the
global level. More details about the nonlinear solution procedures will be given in section

2.6.

Particular case: linear springs
When linear springs are employed, e.g. when modeling a homogenous member with
a linear elastic material, the combination of the compatibility and equilibrium equations

results in a set of four linear equations:

a7
Ta(aa + ) To(as + ¢) anl ||
TQ(aA + qgsc) : kspring,A _TQ(OZB + qg“) : kspring,B ALB 0
0

Therefore, the nonlinear solution procedure at the level of the contact pair is not required.

2.5. Contact pair equilibrium

When the internal nonlinear solution procedure reaches convergence, the spring elon-
gations AL, spring forces Fgying, and q¢ are obtained. Since q¢ is known, the relative
elongations of the springs attached to A and B, expressed in the global reference system,

can be derived (Figure 5):
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Figure 6: Basic forces at the contact point and local resisting forces of one CP at the center of mass of the

two blocks contiguous.

ALax = q; — ¢4
ALxy = g5 — g5
ALpx = (IZ - q?

ALpy = q5 — g5

bsc

The basic resisting forces p**¢ associated to the basic displacements q"*¢ can be found by

establishing equilibrium in the deformed configuration (Figure 6):
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bx

< Dy
p"e = : (17)
px - ALay —py - ALax

px - ALpy —py - ALpx |
which corresponds to the energy conjugate of the basic displacements defined in equation 6.
The two last terms of the vector of basic resisting forces p*¢, i.e. the two resisting moments
at A and B respectively, account for the fact that points A, B and C' are unaligned in the
deformed configuration. They arise from the additional lever arm created when the CP
deforms. The vector p€ of resisting forces of the CP, expressed at points A, B and C' can be

bsc

obtained from p”¢ and corresponds to the energy conjugate of q“:

Pi .
P = by | = ok pbe b b e e 0 o] (18)
P
in which p¢& = 0, highlighting the condensation of the variables relative to point C' at the

loc
c

structural level. The resisting forces p,° of the CP expressed in the local reference systems of
the two blocks composing the CF are derived directly from p”*¢ by establishing equilibrium

in the undeformed configuration (Figure 6):

— CcoS (/g —sinay 00
Sin oy —CoS (g 0 0
ploc _ pé"j B L 4, cos qﬁgc + L 4 sin qégc —L 4, cos qégc + L4y sin qﬁgc 10 pbsc
[ - : )
plos cos ap sin ag 0 0
—sinag Ccos B 0 0
_—LBy cos qi¢° + Lp, sin glg° —Lp, cos gig® — Lp,sin gkec 0 1_
(19)
which is coherent with the principle of contragradiency in structural analysis, since from
equations 7 and 19, p!* = T'(ql*)” - p*°. The energy conjugate of the vector plc is a
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loc
c

vector q.°¢ describing the CP kinematics from the perspective of the two block’s centroids.

However, this vector is trivial, since it is equal to qi°¢ for all the CPs on one CF.

Particular case: linear geometry
When nonlinear geometric effects are neglected, equilibrium is established in the unde-

formed configuration, and equation 19 simplifies to:

plcoc — (Flin)T . pbsc (20)

The resisting actions of one contact face expressed in its local reference system is the

sum of the contributions of each CP composing the CF:

loc

plfoc — pfA — E plcoc. (21)
oc
Pm ceCF

The CF resisting forces expressed in the global reference system depend on the orientation
of the two blocks contiguous to the CF in its undeformed configuration with respect to the

horizontal:

glob loc glob __ loc

Pra = T(aA)T * Psa Ps = T(OCB)T ‘Pt (22)

By assembling the resisting forces of all the contact faces via the incidence matrices (see

equation 1), one obtains:

P, => Afp{” (23)

the resisting forces P, of the structure at the global level can be computed. This vector is
the energy conjugate of the vector of global displacements U of the structure, and contains
the resisting forces of the structure expressed as forces and moments at the centroid of each

block.

2.6. External nonlinear solution procedure

The derivations presented in the previous sections give a step-by-step procedure to com-

pute the global resisting forces P, of the structure from a given set of nodal kinematics
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Figure 7: Graphical roadmap for the computation of the static and kinematic quantities of HybriDFEM,
with identification of the corresponding stiffness matrices as well as of the external and internal nonlinear

solution procedures.

U. The kinematic variables of the structure, the contact faces, the contact pairs and the
springs composing the contact pairs are derived through compatibility equations, and their
corresponding static counterparts (energy conjugates) are derived through equilibrium equa-
tions. They could have been alternatively derived by the Principle of Virtual Work. The
full procedure is summarized in Figure 7. When nonlinear effects are included, this relation
is not invertible and an iterative nonlinear solution procedure is required to find, at each
load step or increment i, the nodal displacements U for which the resisting forces are in
equilibrium with the external forces A\;P.ef applied to the structure, where P, is a given
reference load pattern and the applied forces are incremented proportionally to P by a
factor A;. Three nonlinear solution procedures were implemented in the scope of the present
study. In a classical Newton-Raphson procedure, the load increment is kept constant from
one iteration to the other. In a displacement-control procedure, the value of the load incre-
ment is computed such that the nodal displacement of a controlled DoF "m”, U,,, is kept
constant. Finally, in a work-control procedure, the external work performed by the applied
forces is kept constant. The validity of these three methods in performing nonlinear static
and buckling analyses is demonstrated in what follows.

To obtain quadratic convergence of the nonlinear solution procedures, the tangent stiff-
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ness matrix of the structure is computed at each iteration. This operation starts at the
spring level, for which the tangent stiffness matrix Kyyring is shown in equation 12, expressed
with respect to (n, s), the normal and tangential axis of the spring. For the springs attached
to points A and B, this stiffness matrix can be expressed in the global coordinate system
(X,Y, Z). For the spring attached to A, it yields (similar for B):

kaxx kaxy

kaxy =
kaxy kayy

= T2 (OéA + qgsc) : kspring,A : Tg (aA + qgsc) . (24)

From the expressions of the stiffness matrices of the two springs expressed in the global

coordinate system, the stiffness matrix of the contact pair, k¢ = dp©/0q® can be derived:

a0 ac
k=1 0 kiz kje
Kic" ki kéc
| kaxx  kaxy ki3 0 0 0 —kaxx _kA,XY—
kaxy — kayy  kos 0 0 0  —kaxy —Fkayy
ks kos ks 0 0 I A (25)
B 0 0 0 kpxx kexy ks —kpxx —kpxvy
- 0 0 0  kexy kpyy kss —kpxy —kpyy ’
0 0 0 Kae ks kes  —kao —ks6
—kaxx —kaxy —kiz —kpxx —kpxy —ki  km ks
| —kaxy —kayy —ks —kpxy —kpyy —kse = ks kss |
with:

kis = kaxyALax — kaxxALay
kos = kayyALax — kaxyALay
ksz = kayy ALy + kaxx ALYy — 2kaxyALayALax
ks = kpxxALpy — kp xyALpx
kss = kg xyALay — kg xyALpx

kes = kpyyAL%y + kp xxAL%y — 2kp xyALpy ALpx
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k7 =kaxx +kpxx
krg = kaxy + kB xy

ksg = kayy + kpyy

The stiffness matrix of the contact pair is then condensed to express the incremental

relation between the kinematic and static variables of points A and B only, through k¢ 5 :=

0P/ 0y with (p5)" = (%) (p5)"] (similar for q):

C 0 c

c AC AC c

= O ke ()™ ko)) (26)
0 BC kBC

This stiffness matrix can then be expressed with respect to the local coordinates of

loc

the CF by defining the incremental relation I'G 5 = 0q%z/0q°. Similarly to equation

loc

(&
¢ to pp, hence

19, which relates pl*¢ to p®¢ through T’ (qlf"c), the matrix I'Y 5 relates p

c

loc

C T C .
| :<FAB) "Pap’

oplec B 9 <(FCAB>T : Piua)

kioc _ c_ _
aqéoc aq{foc
e T
Ot PO 0y Oqp”
c T
o (03" .
= ———— Pap + (L) Kis Tis,
aqlfoc

where the first term of this equation accounts for nonlinear geometric effects, and the second
terms relates to the tangent stiffness of the contact pair in its deformed configuration. The
tangent stiffness matrices of all CPs composing a CF can then be assembled to obtain the

stiffness matrix of the CF expressed in its local coordinate system:

— YK (28)

loc loc
kf,BA kf,BB ceCF

loc loc
kloc . kf,AA kf,AB
¢ =
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The latter should then be expressed in the global coordinate system:

T(ca) k%54 T(0a) T(oa) k%5 T(p)

k?lob _
T(ap) k%4 T(aa) T(ap) kT (ap)

(29)

Finally, the tangent stiffness matrix of the structure expressed in the global reference

system can be assembled:

K=> Afk{"A; (30)

This tangent stiffness matrix, which accounts for the nonlinear geometric and material ef-
fects, is recomputed at each iteration in the external solution procedure to achieve quadratic

convergence.

3. Application examples

3.1. Linear elastic analysis of beams

The HybriDFEM method is an extension of the FCEM method, whose ability in solving
linear elastic problems has already been partially demonstrated (Estévao and Oliveira, 2015).
For the sake of completeness, examples of linear elastic analysis have been implemented also
in the developed HybriDFEM script.

The numerical examples consist of two 3m-long beams with a rectangular cross-section
of dimension h x b = 0.5 m x 0.2 m, subjected to a tip vertical downwards force of 100 kN.
They are composed of a homogeneous linear elastic material with £ = 30 GPa and v = 0.
They differ with respect to the boundary conditions: the first beam (B1) is a cantilever
beam, whereas the second (B2) has an additional support at mid-span (Figure 8).

The benchmark consists of two beams with different levels of discretisation, both at
the block and CP level. In particular, for a given CP discretization, the number of blocks
composing the beam is progressively increased and the solution computed by HybriDFEM
is checked against the solution of a continuous beam element. In particular, the vertical
displacement of the free end of the beam is compared with the analytical solution of a

Timoshenko beam, computed with a shear correction factor of y = 6/5 (Timoshenko and
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Figure 8: Axial stresses and deformed shape (x40) of beams B1 (left) and B2 (right) with coarse (15 blocks
x 15 CPs) and fine (100 blocks x 100 CPs) discretisation.

Gere, 1961). Since the problem is linear, the displacements for which the associated resisting
forces are equal to the applied forces are computed directly by inversion of the stiffness matrix
of the structure. The analytical value of vertical displacement of the free end, computed
using the unit dummy force theorem, is equal to dg; = 14.64 mm for B1 and gy = 3.54 mm
for B2, which is a statically indeterminate structure.

The results are visible in Figure 9. The percentage error, corresponding to the difference
between the computed and analytical displacement, divided by the latter, reaches 0.00%
for the finest discretisation of B1, with 100 blocks generating 99 CFs, each divided into
100 CPs. For B2, the percentage error is —0.48% for the same discretisation. The fact
that HybriDFEM predicts smaller displacements than the analytical value for coarse block
discretisation, but larger displacements for coarse CP discretisation, both for B1 and B2,
suggests that a small number of blocks tends to overestimate the stiffness of the beam,
whereas a small number of CPs tends to underestimate it.

The axial stresses in beams B1 and B2 are displayed in Figure 8 for a fine and coarse
discretisation of 15 blocks x 15 CPs and 100 blocks x 100 CPs, respectively. The analytical
value of the maximal axial stress is 36 MPa for B1 and 18 MPa for B2. For B1, the
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Figure 9: Influence of the CP and block discretisation on the beam displacement for (A) Bl and (B) B2.

maximal stress was 32.54 MPa for the coarse and 35.46 MPa for the fine discretisation, which
corresponds to an error of —9.61% and —1.5%, respectively. For B2, the maximal stress was
15.67 MPa (—12.94%) for the coarse and 17.64 MPa (—2%) for the fine discretisation. It is
important to note that a lower value of axial stress with respect to the analytical solution
was expected since it represents an average of the axial stress over the contact surface area
associated to each contact pair. Moreover, the model computes the stresses at the CFs,

which does not correspond exactly to the extremity of the beam.

3.2. Beam with nonlinear material response

A nonlinear material model has been thereafter implemented in the beam B1 to investi-
gate the capability of HybriDFEM to capture its response. The material model adopted for

this example is a bilinear axial stress-strain relationship:

o=c¢ekFy when le|<e
. (31)
o= f,+ale—¢)Ey when le|> ey
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with Ey = 30 GPa and v = 0 (similarly to section 3.1), a yield strength in tension and
compression f, = 20 MPa, and five values for the strain-hardening parameter a: 10%,
5%, 0%, -5% and -10%. The first two correspond to a material with hardening behaviour,
the last two to a material with softening behaviour, and the third value corresponds to an
elastic-perfectly plastic material. The discretisation adopted in this example is 50 blocks x
35 CPs, which has shown to be a satisfactory compromise between precision and required
computational time, for linear elastic analysis.

A downwards vertical load P is applied at the free end of the beam and is controlled
by means of a displacement-control procedure, increasing progressively the rotation of the
second leftmost block, next to the first one being fixed in the three directions. The validation
of the HybriDFEM code in this example is done by means of a sectional analysis, comparing
the curvature of the beam at the leftmost CF and the associated bending moment with the
analytical expression of the moment-curvature relation of a beam with rectangular cross-
section and bilinear material (Pandit and Srinivasan, 2016):

M* = g* when k* <1
, (32)
M*z%(S—ﬁ)%—a(n*—%) when k*>1
where M* is the moment normalized with respect to the moment at first yield M, =
bh%f,/6 and k* is the curvature normalized with respect to the curvature at first yield
ko = (2f,)/(Eoh).

The x* — M* curves obtained by the model for the five values of a are displayed and
compared to the analytical ones in Figure 10, showing very satisfactory agreement with
the analytical curves. Convergence studies have been performed to assess the influence
of block and CP discretisation, where the same simulation was run first with a varying
block discretisation with a very fine CP discretisation (200 CPs), then with a varying CP
discretisation with a very fine block discretisation (200 blocks). It has been observed that,
in this sectional analysis, the block discretisation has no influence on the relative error
between the numerical and analytical k* — M* curves. Since the number of interfaces is

directly related to the number of blocks, the block discretisation only has an influence on
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Figure 10: Moment-curvature relation for beam B1 with bilinear material and different values of strain-

hardening ratio «.

the number of points along the beam at which the value of the curvature can be known.
Figures 11 (A) and (B) show the influence of the CP discretisation for a material with
hardening or softening behaviour, respectively. With 20 CPs or more, the percentage error
is negligible. For the hardening material, the error computed for large values of x*, where
nearly all the CPs have yielded, converges back to the percentage error obtained when the
beam behaves linearly (k* < 1). For the softening material, the relative error increases for

large values of k* and lower number of CPs.

3.8. Buckling analysis of beam-columns

The ability of the HybriDFEM method in modelling geometric nonlinearities is tested
by conducting the buckling analysis of beam-columns with different boundary conditions,
length-to-height ratio, and size ratio. In this benchmark, the same linear elastic material as

in section 3.1 is used.

The first column that is considered is 4m high and relatively slender, with L/h = 20. The
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Figure 11: Influence of the CP discretisation on the moment-curvature relation for (A) hardening material
with @ = 10%, and (B) softening material with o« = —10%. The block discretisation is the same for all
simulations (200 blocks).
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cross-section of the beam is squared, with h = 0.2 m. The adopted beam discretisation is
the same as in section 3.2. Four different boundary conditions are implemented: fixed-fixed
(FF), fixed-free (FFr), fixed-pinned (FP) and pinned-pinned (PP). A small perturbation is
introduced in the column, by means of a constant horizontal force Fj, = 10 N to the left,
applied at mid-height of the column. The horizontal displacement of the node on which
Fy, is applied is denoted ¢ and is monitored throughout the whole simulation. Its initial
value, when only F}, is applied on the column, is denoted dy. A monotonically increasing
axial compression force F), is then applied on the top of the column, controlled by means
of a work-control procedure (de Borst et al., 2012). The vertical force applied at the last
converged step is compared with the theoretical Euler buckling load N, p = mEl/ Lfc.

The graph in Figure 12 shows, for the 4 different boundary conditions considered, the
increase in horizontal displacement, § —dy, normalized with respect to dy, against the applied
vertical force normalized with respect to the theoretical Euler load. The error between the
maximum vertical load and the theoretical one is between —3.15% (FFr) and —1.48% (PP).
The obtained buckling modes for each set of boundary conditions are also visible on Figure
12, agreeing with the expected buckling modes of a continuous beam-column.

A convergence study was conducted to evaluate the influence of the CP discretisation
while varying the number of blocks. Figure 13 shows the influence of both discretisations
on the relative error between the vertical load obtained at the last converged step with
respect to the theoretical Euler buckling load for the pinned-pinned (PP) slender column. A
coarse CP discretisation yields values of the critical load that are significantly lower than the
theoretical one. From 30 blocks onwards, the relative error does not improve significantly
when increasing the number of blocks. It is important to note that the maximal load obtained
numerically is the load applied at the last converged equilibrium point in the simulation and
therefore also depends on the number of increments chosen for the simulation, since a larger
number of increments allow to get closer to the exact solution. In this case, all simulations
were run in 80 increments. Finally, diminishing the relative size of the beam blocks brings
to a buckling solution for the discrete system that is closer to the theoretical one for the

continuous column. For a column made of 10, or more, blocks, the difference between the
30



o
o
I

Normalized axial force F, /N,
= >
| L

o
[
I

0.0

T T T T T
0 10 20 30 40 50 60
Normalized control displacement (6 — dp)/do

Figure 12: Buckling response of a slender column with different boundary conditions.

computed and estimated value is less than 3% for 10 CPs or more. The influence of the size
of the blocks with respect to the size of the column becomes particularly visible for columns
made up of 6, or less, blocks.

The benchmark was repeated for a relatively stocky column of height 4 m and L/h = 4.
The cross-section of the beam is rectangular with A x b = 1 m x 0.2 m. The adopted
discretisation and boundary conditions, as well as the applied loading procedure, are the
same as for the slender column. Because the column is stocky, its shear deformations become
non negligible compared to flexural ones. Therefore, the critical Euler load taken as a
reference for the slender column is no longer valid. In its place the buckling load of a

Timoshenko beam-column is considered as reference value (Timoshenko and Gere, 1961):

VIT SXNo /4G — 1
NCT‘T =
’ 2x/AG

: (33)

where G is the shear modulus and A the cross-sectional area of the column.
The graph in Figure 14 shows the buckling response of the stocky columns for different
boundary conditions obtained with HybriDFEM. The curves clearly show convergence to

the theoretical Timoshenko beam theory buckling load, indicating that the shear deforma-
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tions are properly taken into account by the model. The error between the computed and
estimated Timoshenko buckling load varies between —2.00% (FFr) and —0.00% (FF). The

associated buckling modes are visible on the same figure.

3.4. Buckling analysis of systems of blocks

While a very fine block discretisation predicts with precision the buckling load of a
continuous column, the present method also enables to model the buckling behaviour of
rigid-block assemblies. In this example, a system of two vertically stacked rigid blocks of
length L = 0.5 m and square cross-section with h = 0.2 m, hinged at the bottom and top is
considered. A small perturbation consisting in a slight initial rotation of the lower block is
introduced by means of a very small moment M = 10 Nm applied at the block’s centroid,
to initiate the nonlinear geometric behaviour, and an axial load is increasingly applied at
the top of the stack, by means of a work-control procedure as was done for the continuous

columns.
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The axial stiffness of the interface between the two blocks is distributed in n springs
evenly spread across the interface. All springs are assigned an axial stiffness k,,,, = 1 GPa -
h/n representing the stiffness of the interface.

Using an equivalent analytical model composed of two 0.5 m rigid bars connected through
a rotational spring with stiffness k,, the buckling load of the stack can be derived (Challamel
et al., 2014). For an even number of springs along the interface, its equivalent rotational

stiffness equals:
n/2

1
_ 3 } : - 2
kr = I{Znnh 2—713 — (27, — 1) y (34)
The expected buckling load N, of the analytical model can be derived:
n/2
4k 2k, h3 1
N,=_—“—=2""20 2i — 1), 35
R A PO (3)

where N, = ky,,h3/4L = 2000 kN with two CPs, which are located at a distance h/4 from
the axis of the blocks, and N, = k,,,h3/3L = 2667 kN when the interface is represented by
an infinite number of springs, corresponding to the limit for n — oo of equation 35. The
value of the axial load obtained at the last converged step, with HybriDFEM, for different

spring discretisations ranging from 2 springs to 200 springs, are shown in Figure 15 and
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compared with the analytical value expressed in equation 35, along with the buckling shape

of the two blocks. The numerical values show excellent agreement with the analytical ones.

3.5. Flexible column rocking on a rigid foundation

In this benchmark the rocking behaviour of a flexible column on a rigid base is inves-
tigated. It shows the ability of the method to capture simultaneously the behaviour of a
continuous, flexible column, and the behaviour at the interface between a rigid no-tension
support and the flexible column. The benchmark is taken from Avgenakis et al. (Avgenakis
and Psycharis, 2017) and consists of a H = 4 m-high column with a square cross-section
with A = 1 m modeled with 40 blocks and 80 CPs per block, and a linear elastic material
with v = 0.2 and values of E varying from 0.3 GPa to 100 GPa. The column is placed
on a rigid no-tension support, represented by an additional block fixed in the three direc-
tions, to which a linear material law with a very high stiffness Ej is assigned in compression

(Ep > 1000E). Numerically, this corresponds to:
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c=0 and 7=0 when e>0
(36)

o=c¢cky when e<0

A vertical downwards force N = 2500 kN is applied at the top of the column, along
with a horizontal force Fj, which is controlled by a displacement-control procedure on the
top horizontal displacement 4, increased by increments of 5 mm up to 50 cm. Since this
problem yields moderate displacements, nonlinear geometric effects are considered.

Considering the column as a rigid block and neglecting its self-weight, nonlinear kine-
matic analysis yields F}, ;0. = Nh/2H as the force initiating the overturning of the column,
and Ap e = h/2 as the maximum top displacement, at which the applied axial force
no longer opposes the overturning of the column. A curve descending from (0, F}, ;0z) tO
(Apmaz, 0) in the Aj, — Fp-plane, which approaches a straight line for relatively slender
columns, represents an envelope curve for all pushover curves obtained for the column when
some flexibility is introduced (Giordano et al., 2020). The latter are represented in Figure
16, in which the values of displacement and force are normalized with respect to Fj, yq, and
A

The pushover curves of the column obtained for the values of Young’s modulus ranging
from 0.3 GPa to 100 GPa are visible in Figure 16. The first part of the pushover curves
shows a linear behaviour with a stiffer slope for higher values of E. This part corresponds to
the column deforming without losing contact with the support. As soon as the overturning
is initiated, contacts between the column and the support are lost and the slope of the curve
starts decreasing, to finally enter the descending branch of the pushover curve, progressively

becoming parallel to the envelope line.

3.6. Coupling with classical FEM

The element presented in this paper has been developed with the intention to couple it
with classical finite elements. To illustrate this feature, the benchmark presented hereabove

is here reproposed without considering nonlinear geometric effects.
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Figure 16: Rocking response of a flexible column on a no-tension rigid foundation.

With reference to Figure 17 (A), two different models have been implemented. The full
HybriDFEM model is the same as the one described above, composed of 40 blocks and 80
CPs, except that linear geometry is considered. The HybriDFEM-FEM coupled model is
composed of the same support block, followed by ten blocks with 80 CPs representing the
first meter of the column. The top block is connected through a rigid-node connection to one
linear Timoshenko beam element representing the upper three meters (Davis et al., 1972).
The axial and horizontal forces are both applied at the top extremity of the beam finite
element. Since the beam element is very simple, in this case one fourth of the height of
the column still needed to be modeled with HybriDFEM to allow for a redistribution of the
stresses according to Saint Venant’s principle.

The two models have been run with a displacement-control procedure up to a normalized
top displacement of 1 and the results are compared in Figure 17 (B). The curves associated to
the stiffer columns show a very good match between the results of the full HybriDFEM model
and the HybriDFEM-FEM coupled model. For the most flexible columns (E = 0.3 GPa),
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Figure 17: (A) HybriDFEM-FEM coupled and full HybriDFEM model of the column at Ap = 0.5 m for
E = 30 GPa and (B) Normalized force-displacement curves for both models without nonlinear geometric

effects.

the response of the coupled model yields a stiffer response than the full HybriDFEM model.
On average, the computational time needed for the coupled model was 3.5 to 4 times shorter

than for the full model.

4. Conclusions

In this paper, a novel structural analysis method called Hybrid-Discrete-Finite Element
Method (HybriDFEM) has been presented. It was developed as a reformulation and exten-
sion of the Fibre Contact Element Method (FCEM) (Estévao and Oliveira, 2015), in which
the structure is modeled as a set of rigid blocks connected through nonlinear springs dis-
tributed along the contact interfaces. In its current state of development, HybriDFEM can
model one-dimensional beam-like elements in which all the blocks are aligned. However, the
mathematical developments were carried out anticipating the possibility of having unaligned

blocks (e.g. to model curved structures with discontinuities, like masonry arches). Unlike
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the Applied Element Method (AEM) (Meguro and Tagel-Din, 1999), the interfaces can be
composed of multiple springs in series, which allow sectional deformations to be captured or
deformations of the interface to be differentiated from deformations of the material. It has
been shown that, by adapting the spring constitutive relations, it is possible to model accu-
rately either continuous members or assemblies of distinct blocks as is done in the Discrete
Element Methods. Special care has been taken in developing a formulation that resembles
the classical FEM, in order to allow for coupling of HybriDFEM with finite elements towards
a computationally more efficient model nevertheless able to properly model discontinuities.

In Section 2, the procedure to derive the global resisting forces of the structure was
presented step-by-step (Figure 7). This procedure computes the resisting forces in the de-
formed configuration, thus accounting for nonlinear geometric effects. Moreover, it makes
use of an internal nonlinear solution procedure to satisfy equilibrium of the spring forces at
the contact points along the interfaces between blocks. Through this iterative solution pro-
cedure, nonlinear material behaviour can be accounted for. The internal Newton-Raphson
solution procedure was found to converge within a limited number of steps, typically one or
two, the only exceptions being when contact between blocks composed of different materials
(e.g., a soft block rocking on a rigid base) and moderate displacements (e.g., post-buckling
behavior of columns) were analyzed. Consequently, the computational cost associated with
this solution scheme, classically adopted in the FEM formulation, is deemed reasonable also
in this framework.

After presenting the mathematical derivations of the method, it was validated against
benchmark examples (Section 3), demonstrating the performance of the method in modeling
continuous planar structures as well as structures presenting discontinuities. Starting from
a validation for simple linear elastic beams, its ability to model nonlinear material effects
was then demonstrated by modeling the moment-curvature response of a beam with bilinear
materials with different hardening and softening ratios. The nonlinear geometric behaviour
was validated by modeling the buckling of slender and stocky continuous columns and the
buckling of an assembly of two rigid blocks with a flexible interface. Both for the continuous

column as for the two rigid blocks, the numerical results showed very good agreement with
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the expected analytical values. Then, the rocking behaviour of a flexible column on a rigid
base, including nonlinear geometric effects, was validated against the analytical solution of
its rigid-block equivalent. Finally, a first example of coupling of HybriDFEM with a classical
Timoshenko beam element (Davis et al., 1972) served as a promising proof of concept for
the purpose for which the method was developed. This feature will be mainly explored in
future works.

Further and ongoing developments of HybriDFEM include the extension to models com-
posed of non-aligned blocks and rigid-node connections to connect different beam-like mem-
bers, which would allow curved structures and frames with structural discontinuities to be
modeled. A time-stepping algorithm will be implemented to handle dynamic problems and
model the dynamic collapse of a structure. Extending HybriDFEM to two-directional mem-
bers (block discretization along perpendicular axes) will allow effects such as the shear stress
repartition or St-Venant’s principle to be captured. Other promising extensions of the model
will also be investigated, namely the coupling of finite elements with HybriDFEM using non-
linear springs instead of rigid-node connections (to model, e.g., detachment), and the use of
more advanced FEM formulations (e.g., accounting for geometric and material nonlinear-
ities), towards a computationally efficient approach that fully combines the advantages of

FEM with a formulation that explicitly models discontinuities.
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