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Abstract

This report gives a snapshot of the literature in the intersection of Foreign Information
Manipulation and Interference (FIMI) and Large Language Models. The aim is to give a
non-technical comprehensive understanding of how weaknesses in the language models can
be used for creating malicious content to be used in FIMI. With the aid of a conceptual
threat model, we point to both attack and defence strategies.
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1 Introduction

Foreign Information Manipulation and Interference (FIMI) is an umbrella term for misin-
formation, disinformation, malinformation and other distortions. FIMI has during the past
decades grown into a global threat permeating a vast array of public discourse and commu-
nication, not least on social media[57, 14]. FIMI is a threat against democracy, health, and
privacy[60, 64, 82].

Recent developments have seen the use of generative Artificial Intelligence (AI) for increas-
ing the impact of operations aiming at FIMI. For example, Large Language Models (LLMs)
are capable of creating text that is practically indistinguishable from human texts [35, 42].
LLMs are beginning to be used for controlling botnets for global rapid automated dissemina-
tion of malicious content and disinformation [104]. The past years’ revolutionizing progress
in generative AI for images, video, and audio facilitate multi-model information attacks,
and will only keep adding to the difficulty in combating AI-driven FIMI. The interest in
using generative AI for FIMI stems from the promise of massive distribution of low-cost
propaganda[40]. Moreover, as Goldstein et al. argue, the low cost of setting up such ‘troll
farms’ allows to quickly change campaign focus to adapt to current news events[36]. Jachim
et al. argue that the use of generative AI for FIMI is particularly suited for states and
state sponsored trolls to further geopolitical agendas through propagation and creation of for
example rumors, conspiracy theories, and malicious narratives[40].

There is also an ongoing effort to mitigate generative AI-based FIMI with both technical
and policy-based measures being suggested and implemented. While technical measures such
as curation of training data (for example, to avoid known biases)[9] and safety alignment,
a method used to align the models behavior to human preference and ethics, [76] may be
successful in many respects, they may also be insufficient in others. Safety aligned models
can with little effort be instructed to generate unsafe output[69, 106]. In the context of Large
Language Models (LLMs), which is the focus of this report, an unsafe output is a string1 that
can be used in FIMI, i.e., strings propagating hate, immoral views, discrimination, violence,
etc. The need for continuous and ongoing effort to counter AI-based FIMI depends in part
on the difficulty in modeling it[14], and in part on the rapid technological development in the
field of generative AI. Moreover, there is an asymmetry between threat actors and defenders,
where threat actors can focus its resources on, say, one malicious type of content or one
particular attack vector, while the defender needs to defend against all conceivable threats
at all times. Policy-based efforts (see e.g., [95]) to mitigate FIMI are connected with other
types of complications. Such approaches often suggest community-based solutions including
educational efforts and collaborations between parties with commercial interests and parties
with civil responsibilities. Goldstein et al. [36] give an account of such suggestions.

In this report we will make an attempt to add value on the topic of the use of generative
AI in FIMI – in the midst of the current avalanche of reports and articles being published
every week in the field. Our contribution is that we approach the topic from the perspective
of LLMs and the capabilities required for using such models in FIMI, without going into
technical detail and requiring AI domain knowledge. Our technically focused report should

1we will subsequently use the technical word string which informally could be said to mean a part of text
(such as a word, or a sentence).
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thus be accessible also for practitioners who may have other backgrounds than one in the
field of AI.

Thus, the aim for the report is to bridge a perceived gap among existing works in the
field. Many reports and articles consider the societal aspects of FIMI, while other considers
the technical aspects of vulnerabilities in generative AI models. There seems to be a lot of
knowledge encoded into two of the directions, but at the same time it seems that there is little
communication inbetween. It is this gap we want to fill by providing tools for describing how
the strings that can be used in FIMI are generated. In addition, we point out, where deemed
interesting, which technical resources and skills are needed for utilizing LLMs in FIMI. With
respect to methodology, the report makes a subjective snap shot of recent and central works
in the area with the purpose of bridging this perceived gap.

We assume that i) LLMs are pre-trained on datasets that in general are large enough
to contain unsafe strings [9], and ii) any LLM is capable of generating output that is in-
distinguishable from at least one example in its training data2. With this concept, we can
formulate the problem of LLM-based FIMI by saying that the threat actor wishes to make
an LLM generate a specific unsafe piece of text while the defender aims for preventing the
model from generating unsafe pieces of texts.

The report is structured as follows. We give a background to LLMs and a specification of
what our interests with respect to FIMI in Sec. 2. In Sec 3 we introduce a conceptual threat
model for bridging the gap between social and technical aspects of LLM-driven FIMI. Sec. 4
considers FIMI from the viewpoint of risk posed by open-source LLMs. We also give insights
to requirement on resources and skills for exploiting particular weaknesses. Sec. 5 discusses
briefly threats from LLM-driven botnets. Sec. 6 considers three mitigation strategies of
relevance for our LLM focused topics. Sec. 7 contributes with three recommendations based
on the material in the report and Sec. 8 is the conclusion.

2 Background

There are no standard vocabularies and definitions of terms in this field. Therefore, we will
define the terms used in this section as well as putting our work in context.

2.1 Foreign Information Manipulation & Interference

In this report we use FIMI (Foreign Information Manipulation and Influence) as an umbrella
term for the concepts of misinformation, disinformation, and malinformation. We follow
the common terminology from Wardle et al. [95] (and others, e.g., [53, 78]) and define the
concepts respectively as follows.

Disinformation is inaccurate information that is intentionally spread to cause harm by
misleading or deceiving. Misinformation is false content that is shared in good faith. Mal-
information is to describe genuine information that is shared with an intent to cause harm.

2The second requirement says that it matters what data we train the LLMs on (and on how unsafe output
is prevented), which is the topic of this report. That the output may be indistinguishable from human
generated text is more of a psychological/cognitive matter, and that is not the primary concern of the report.
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In the setting of LLMs, where the training often is made on uncurated data collected from
social media and other public fora, we include rumors and urban legends as examples of
problematic content that could be used in FIMI [78]. For the present setting where we focus
on FIMI enabled by LLMs, we can specify the three main concepts more precisely:

Misinformation : non-factual output from an LLM

Disinformation : the intentional act of a threat actor to disseminate misinformation ex-
tracted from an LLM.

Malinformation : the intentional act of a threat actor to use the output of an LLM out of
context with malicious intent.

This report does not consider goals, operations, or tactics of FIMI. Of more interest is
the potential to generate output of LLMs that can be used in operations aimed at FIMI.
Such output usually reflect biased, immoral, sexist, racist, or non-factual aspects of the
data used for the training of LLMs. Furthermore, this report does not go into classifying
different types of toxicity that can be generated with LLMs. Thorough exploration of risk,
toxicity, and harm that can be used in FIMI are given in recent surveys and reports such as
Refs. [34, 17, 77, 97, 98].

Yang et al. [103] and Chang et al. [16] give recent surveys of the capabilities of LLMs
with relevance to this report. Dong et al. [28] give a recent and thorough survey on attack
patterns against LLMs. Shayegani et al. [75] give a thorough survey of LLM vulnerabilities.

Recently, there have been several works published with an aim similar to that of this re-
port: a more fine-grained investigation of the connection between LLMs and FIMI, exploring
the aspects of LLMs that make them susceptible for generating toxic output. Lu [49] points
to the need for investigation of how LLMs are used to generate output that can be used for
FIMI, rather than merely enumerating and classifying toxic material. Wolf et al. [99] give a
rigorous model of how output from LLMs can be exploited in FIMI. Chen et al. [17] make
connections between FIMI types and LLM exploits.

2.2 Generative AI

The field of AI encompasses many different types of algorithms and methods. It is out of
scope for this report to paint a complete picture of the field. However, it can be divided
into a hierarchy of domains, presented in Fig. 1. While the field of AI is very broad and
has been active since the 1950s, the research in the domain called deep learning has been
intense during the past 15 years. Deep learning is a set of methods that use deep neural
networks, i.e., neural networks containing more than one so-called hidden node layer (Fig. 2),
to find complex patterns and relationships in large datasets. Generative AI is a subdomain of
deep learning, and is now a significant driver of AI-related investments by large corporations,
venture capitalists, and retail investors34. In contrast to non-generative AI, where the output

3https://dealroom.co/guides/generative-ai
4https://www.goldmansachs.com/intelligence/pages/ai-investment-forecast-to-approach-200-billion-

globally-by-2025.html
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is typically a classification of a data point, such as an image of a cat, or a numerical prediction
based on a set of data points, such as the price of a house, generative AI is characterized by
the ability to generate new data, in the form of text, image, and video, from a prompt – an
input or query to the AI in order to elicit a response from the model – consisting of data of
either the same data type or a different one, see Fig. 3.

Figure 1: The different types of AI.

Figure 2: A ”non-deep” (left) vs. a deep neural network (right).

Generative AI comes in many shapes and sizes. The state-of-the-art image generators
are rapidly improving, and it is becoming increasingly difficult for humans to distinguish AI-
generated images from real ones. While models such as Midjourney5, Stable Diffusion6 and
DALL-E7 had difficulties generating images of humans without considerable artifacts one year

5https://www.midjourney.com/home
6https://stability.ai/news/stable-diffusion-3
7https://openai.com/dall-e-3
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Figure 3: Non-generative (left) vs. generative AI (right).

back, the latest versions are in general capable of generating highly believable images. Audio
generators in the form of speech generation models such as models from ElevenLabs8 can
generate realistic voices, with a very good grasp of speech modulation and breathing sounds.
The same company also provides voice cloning models, which are becoming increasingly
believable. Video generators seem to have come one step closer to realistic text-to-video
generation with Sora by Open AI9, which was announced and demonstrated (although not
publicly released) in February 2024. Multimodal models or Large multimodal models (LMMs)
– generative AI models that can both ingest and generate more than one data type – are
considered a natural development of the field of generative AI. As an example GPT-4V10 is
multimodal and can provide a textual analysis of both images and text. The most advanced
versions of Gemini11, Gemini 1.0 Ultra and Gemini 1.5 Pro, can ingest text, images, and
video, and can do image analysis as well as generate images. Multimodal ”any-to-any”
models, depicted on the right in Fig. 3, are actively discussed in the literature and are
eventually set to emerge[100]. Arguably, the most notable generative models are still the
LLMs, which is the focus of this report and will be further introduced below.

Like many technologies, generative AI is a double-edged sword: while its potential to
benefit humanity is enormous, it is clear that it can also be used for deeply destructive
purposes. Perhaps the biggest threat that it currently poses is as a method to enhance,
generate, as well as propagate FIMI. Digital FIMI can consist of many different data types,
either alone or in combination, and while at present generative AI models perform best with
respect to text output, the steady increase in performance that is observed for other data
types makes it highly likely that generative AI will eventually dominate or completely replace
conventional methods for FIMI.

8https://elevenlabs.io/
9https://openai.com/sora

10https://openai.com/research/gpt-4v-system-card
11https://deepmind.google/technologies/gemini
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2.2.1 Text generators: Large Language models (LLMs)

Large language models have in recent years both revolutionized language technology and
achieved enormous impact on society at large. Initially, types of neural networks such as
Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, which
process and capture relationships in text sequentially, were used. However, there has been a
very rapid development following the emergence of transformers [87]. A key to their success
is that they use a mechanism, so-called attention, that makes it possible to capture depen-
dencies that extend across entire documents. Transformers are used, for example, in BERT
(Bidirectional Encoder Representations from Transformers)[25] by Google, and more recently
in GPT-4 (Generative Pre-trained Transformer) by Open AI[61] and Llama2 by Meta[83].

LLMs can be prompted to write everything from poems, dinner recipes, and short stories,
to scientific text and computer code. Some claim that they possess the ability to reason, or at
least to simulate reasoning, since they can generate answers to questions that would require
deductive or inductive reasoning for a human, in contrast to simple fact retrieval. LLMs work
by ingesting all prompts and the corresponding generated replies in a conversation – this is
commonly referred to as the LLM’s context. Based on patterns learned during training, the
model then predicts the word, or strictly speaking token (commonly consisting of one or
several characters, for example in the form of a word), that is most likely follow. At the time
of writing (March 2024), the context window is about 128 000 tokens for the most common
LLMs, such as OpenAI’s GPT-412, which implies that it is limited to read, write and reason
about texts or code no longer than a typical novel (300 pp). While growing context windows
can be expected to enhance the ability of LLMs to be used for creation of FIMI, it should be
stressed that even LLMs with very small context windows still can be very capable.

In the last 1.5 years, media and the public have mostly had their attention focused on
ChatGPT and to some extent Google’s catch-up efforts with Bard13 and Gemini. These are
closed-source14 models that can only be accessed via online graphical user interfaces or APIs.

Most of the recent developments of LLMs have been driven by hyperscalers, such as
Google, Microsoft and Meta, due to the high resource demand, which we elaborate on in
Sec. 4.1. However, driven by academic interest and industrial need, significant effort is
being put into developing capable open-source models. These pre-trained models are readily
available to the public, e.g. on the platforms Hugging Face15 or ollama16. The players in
this field span giants like Meta as well as startups and smaller companies such as Mistral17

and Databricks18. These models are typically much smaller in size compared to their closed-
source counterparts. Size in this context is determined from the number of parameters in the
model, which for deep learning models is often used interchangeably with weights, which are
essentially the strengths of the connections between the nodes in a neural network, i.e., the
lines in Fig. 2. While these models are significantly smaller they still perform increasingly

12https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
13An LLM chatbot based on the older models LaMDA, PaLM, and PaLM 2.
14With one exception: Gemini Nano, the smallest model in the Gemini Family.
15https://huggingface.co/
16https://ollama.com/
17https://mistral.ai/
18https://www.databricks.com/

10

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://huggingface.co/
https://ollama.com/
https://mistral.ai/
https://www.databricks.com/


well, especially for specific tasks. As previously pointed out, the landscape changes on an
almost daily basis. A snapshot of examples of state-of-the-art open-source models at the
time of writing are Mistral 19, the mixture of experts model Mixtral20, DeepSeek21 and
Llama 222. Other examples of open-source are national initiatives, such as the Nordic models
GPT-SW323 and Poro24.

While the open-source models have democratized LLMs, the fact that anyone can, in
principle, train them, also opens for FIMI attacks that are potentially far more powerful
than attacks using access-restricted closed-source LLMs. In this work, open-source LLMs
will thus receive extra focus. The topic is further discussed in Sec 4.

2.2.2 Training generative AI models

Nearly all of the most popular and best performing generative AI models, including all
models discussed in this report, are based on the transformer architecture[87]. In the context
of LLMs, transformers function as so-called sequence-to-sequence (seq2seq) models since they
take as input sequences of tokens and transform them into output sequences. Transformers
have several advantages to other architectures, the two most consequential ones being that
their performance scales very well with parameter count and dataset size [44]. This scaling
behavior is taken advantage of when training today’s LLMs by using billions of parameters
and enormous amounts of data. Coupled with the fact that, during training, the parameters
may need millions or even billions of updates, and that, depending on the application, part
of the training may require human supervision, means that LLMs are notoriously resource
intensive and expensive to train from scratch.

Current state-of-the-art LLMs like GPT-4 are commonly trained in three steps: a pre-
training step and two fine-tuning steps called instruction tuning and reinforcement learning
from human feedback (RLHF)[21, 62]. Since attacks on LLMs can be directed to each of
these steps, we will briefly elaborate on them below.

Pre-training In the pre-training step the LLMs are trained unsupervised – the training
reward signal does not rely on human-labeled data – on vast amounts of publicly available25

and proprietary data26. Pre-training typically occurs by the model learning to predict words
in a given context through the masking of words to be predicted. Pre-training not only
gives the model a general understanding of language and the ability to generate text but also
factual knowledge and (to some extent) reasoning capacity.

19https://huggingface.co/mistralai
20https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
21https://huggingface.co/deepseek-ai
22https://llama.meta.com/
23https://www.ai.se/sv/projekt/gpt-sw3
24https://huggingface.co/LumiOpen/Poro-34B
25One example is the petabyte-sized datasets from Common Crawl
26Recently, OpenAI signed a deal with the media and technology company Axel Springer for data ac-

cess,https://openai.com/blog/axel-springer-partnership and as the owner of YouTube Google of course has
access to petabytes of video.
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Instruction tuning The model is then adapted for a specific task and domain through
fine-tuning. Instruction tuning is a supervised fine-tuning step where the LLMs are trained
on human-labeled datasets, usually consisting of instructions to write something (like a poem,
a short story, or a recipe), possible contextual information, and the desired output.

RLHF The RLHF is a more complex and manually demanding step that begins with
humans creating labeled data by prompting the instruction-tuned LLMs and collecting the
output. These labeled data pairs are fed into a separate reward model, which is trained to
classify a given prompt-output pair as ‘good’ or ‘bad’ based on whether the output fits the
prompt. The reward model is then used as a classifier of prompt-output pairs in a training
loop where, in each iteration, the LLM is automatically prompted, and prompt-output pairs
and their corresponding classification scores are collected into datasets that are fed back into
the LLM. The LLM is trained on these datasets to maximize the probability of generating a
well-fitting output to any given prompt.

The fine-tuning steps are intended to ensure that the output is more predictable and
controllable, and aligns with human expectations and preferences, as well as with ethics and
safety requirements. This process is known as safety alignment approaches for which the
current focus is on RLHF [22, 63]. Another way of safety alignment is by pre-training on
carefully curated datasets. As an example the LLM Zephyr-7b [86] was trained on the aligned
dataset UltraFeedback [24]. These steps are, of course, highly dependent on the human
developers, and thus they present an opportunity for threat actors to introduce significant
negative bias in a model, in addition to any bias advertently or inadvertently introduced in
the pre-training step through the dataset selection.

As will be discussed in more detail in Sec. 4, pre-training of even small LLMs from scratch
is currently limited to large corporations and possibly in government-funded projects, while
smaller actors who want direct access to an LLM and to tailor it to their needs have to
use open-source models and focus on the fine-tuning steps or on direct modification of the
parameters. For closed-source models the only realistic alternatives is to explore methods to
manage the output.

3 Conceptual Threat Model

We devise an informal model for describing the use LLMs in FIMI. The threat model provides
a bridge between technical LLM concepts and social FIMI concepts. Until recently, work in
the field has either been focused on technical aspects vulnerabilities of LLMs, or more on
societal aspects of FIMI. This report strives for being more specific by pointing to how an
LLM is abused in FIMI, as well as being more specific about how different vulnerabilities of
LLMs can be used in FIMI.

Our threat model is similar to Wolf et al.’s Behavioral Expectation Bounds (BEB)-
framework [99]. It should however be noted that the two models have different purposes.
Both models assume that an LLM always is capable of generating an unsafe output, regard-
less of alignment efforts. Moreover, both models describe the attacker as someone who wants
to increase the likelihood of generating unsafe output, and the defender as someone who
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Figure 4: LLM attack types. All attacks except jailbreaking, prompt injection, and model
stealing require direct access to the model, either via ownership, hacking, or open-source

wants to decrease the likelihood. While our model is conceptual and aimed as an informal
tool for discussing generation of material that could be used in FIMI, the BEB-framework
provides a more rigorous probabilistic foundation for the same ideas. Another difference is
that our model conceptualizes attacker and defender goals, while the BEB-framework con-
siders more generally a probabilistic model with respect to the strings that can be generated
as output from an LLM.

In the introduction we stated that an LLM is capable of generating an output string that
is indistinguishable from at least one string in its training data. For modeling generation
of strings that could be used for FIMI, we will strengthen that statement and distinguish
between safe and unsafe strings (either as output, examples in training data, or as instruc-
tions).

The concept of safe string is defined by ethical AI standards (for example [43]). Such eth-
ical considerations aim for preventing dissemination of material with topics such as harass-
ment, racism, sexism, and hate speech[32], that may be used in for FIMI, potentially leading
to call for violence or division, and to threats against human and democratic values[43]. We
say that a string is unsafe if it can be used in a way that is not sanctioned by a set of AI
ethical guidelines (such as those described in [43]). We say that a string is safe if it conforms
with AI ethical guidelines.

The significance of the distinction is that unsafe output strings are assumed to enable
creation of FIMI. A string is said to be inferred27 from the training data of an LLM whenever

27Note that this use of the notion of ‘inference’ is the more general sense from logic than the one used in
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there is a positive probability that the string is contained in the output of the LLM for some
user input. Then we can formulate the fundamental assumption of our threat model as

An LLM is capable of generating an output string that is indistinguishable from
some unsafe string that can be (statistically) inferred from the training data.

With this formulation, we can characterize the roles of threat actor and defender in terms
of the fundamental assumption. The threat actor want to elicit ways of increasing the odds
that an LLM generates unsafe output strings, and in this report we consider four such cases,
also illustrated in Figure 4:

Pre-training attacks If the threat actor has access to the dataset for pre-training a foun-
dation model, or is able to interfere with routines for selecting pre-training datasets,
the model can be skewed to contain training examples of arbitrary unsafe character.

Model poisoning attacks If the threat actor has access to the model (e.g., if it is an open-
source model), he or she can increase the odds of generating unsafe output by modifying
the weights in the neural network, either directly or via tampering with components of
the model (e.g., the loss functions).

Fine-tuning attacks Having access to a model, either as open-source or via an API for
fine-tuning, the threat actor can insert examples in the training data that increases the
odds that the model outputs unsafe strings for arbitrary input strings (both safe and
unsafe).

Safety alignment attacks It has been shown that safety aligned models can be fine-tuned
using only a small dataset (in the magnitude of 100 malicious examples) to completely
bypass the alignment [69, 105] and act as un unaligned model. Yang et al. [105] showed
this for several open-source models, including Llama 2, Falcon28, and Vicuna29. Qi
et al. [69] managed to circumvent the guardrails of GPT-3.5-Turbo via the publicly
accessible API, by fine-tuning on a small set of examples.

The defender’s task is to prevent the generation of unsafe strings. We illustrate next,
using our threat model, three defensive strategies. We note also that each defensive strategy
gives rise to an attack vector.

Curation of training data According to the basic assumption, the capability of LLMs to
generate unsafe strings stems from the training data. LLMs are pre-trained on large
datasets with examples from diverse and unknown sources. Several studies remark
that such data is inherently biased [9, 26] and contains toxic material naturally [79]. In
line with our basic assumption, Dixon et al. note that the inherent toxicity and bias
in the data may propagate to the generated output [26]. Moreover, such content can

machine learning.
28https://falconllm.tii.ae/
29https://lmsys.org/blog/2023-03-30-vicuna/
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even become amplified by modeling choices [9] One way of preventing such biased toxic
material from propagating is to curate the training data carefully for balancing out any
bias and toxicity [9], which however would require increased efforts in collection and
documentation [9]. Even with curated and balanced training datasets, there remains
the problem with precisely defining toxicity and bias [10], as well as the problem with
of the variations over time and culture with respect to ethical standards [9, 31, 30].

Safety alignment The purpose of safety alignment is to train the model to respond in safe
ways by being rewarded for learning human values. It relies on various machine learn-
ing techniques, including RLHF (See Sec. 2.2.2) which often is performed by humans in
so-called red-teaming exercises [6, 33, 84]. Red-teaming as an approach to safety align-
ment has been questioned for lack of systematic procedures and risk of only partially
covering problematic training examples [31]. Shen et al. [76] discuss the concept of
inner alignment of LLMs where the loss functions are adapted to penalize unsafe model
behavior, based on specifically crafted examples. Both types of alignment approaches
risk missing problematic examples, allowing LLMs to generate unsafe output. Qi et
al. [69], among others, show this by successfully fine-tuning safety aligned models into
being able to produce unsafe output.

Filtering The defender may also prevent attempts to elicit unsafe output by blocking certain
topics, words, or statistical properties of input[28, 41, 59]. Filtering does however not
guarantee to cover all possible cases of malicious content[71], which leaves also filtered
models susceptible to eliciting unsafe output.

The main focus in our subsequent discussions will center around the question of how
LLMs can be made to, or prevented from, generating unsafe output. Such output has the
potential to be used in FIMI. To aid this discussion, we summarize our conceptual threat
model in three items as:

• An LLM is capable of generating any unsafe output that can be inferred from its
training data

• A threat actor seeks ways of increasing the odds of generating unsafe output

• A defender seeks ways of decreasing the odds of generating unsafe output.

4 Leveraging direct and unrestricted access to LLMs

for FIMI

In Sec. 3, we defined a threat model and discussed how the methods of this model enable
use of LLMs for FIMI. While these methods are conceptually simple, they might practically
be very complex, especially since training of a sufficiently high-performing LLM is a resource
intensive procedure. In this section, we will discuss some of the technical requirements and
the feasibility of the methods described in the threat model. The idea is to indicate the
likelihood of a particular method being employed, and consequently provide some guidance
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as to which mitigation efforts should be prioritized. Since fine-tuning and safety alignment
are closely related, we discuss attacks related to these steps together in the final part of this
section.

Direct, unrestricted model access is key when it comes to our threat model; with this
level of access, a threat actor could, in principle, use any of methods in the threat model to
cause harm. While ”unrestricted access” here could conceivably mean an extremely generous
API access, only a stolen LLM, an LLM built from the ground up, or an open-source LLM
fulfills the ”direct” criterion. The most likely scenario for both direct and unrestricted access
is using one of the readily available open-source models.

4.1 Technical feasibility of pre-training attacks

Virtually all popular open-source LLMs come pre-trained off-the-shelf. As described in
Sec. 2.2.2 pre-training is the most resource intensive step of the training process, and mod-
els that are even a fraction of the size of GPT-4 still require massive amounts of compute.
For example, Meta reports that Llama 65B (i.e., the version with 65 billion parameters), the
largest version of their widely-used first iteration of the open-source LLM Llama, was trained
for 21 days using 2048 NVIDIA A100s[83]. The open information on training of the latest
iteration of the Llama models, Llama 2 70B30, is limited to the number of GPU hours, but
extrapolation would give roughly 35 days to train with the same amount of NVIDIA A100s.
The smallest version with 7 billion parameters, Llama 2 7B, consumed about 1/10th of the
number of GPU hours, which is a lot less but still prohibitively expensive for most actors[85].

As of March 2024, the market price of an NVIDIA A100 (which, should be noted, has
now been superseded by more powerful models), ranges from around e10 000 to e25 000,
depending on version. Thus, if a threat actor wants to pre-train even Llama 2 7B within
a reasonable time frame, they need access to at minimum hundreds of thousands of euros
worth of GPUs, either through a local server, or via the cloud. Training in the cloud of course
removes the upfront cost of purchasing GPUs, but the price per GPU hour on, e.g., AWS31

and Azure32 is high enough that this may be an even more expensive solution.
According to a comprehensive LLM survey from 2024[52], the smallest versions of most

open-source LLMs released after ChatGPT in November 2022 have at least 7 billion pa-
rameters, such as some of the fine-tuned variants of Llama (Alpaca33, Vicuna34 etc.), and
Mistral 7B35 Two exceptions are TinyLlama-1.1B (from a research group unaffiliated with
Meta)[110], which uses the same architecture as Llama 2, but only has 1.1 billion parameters,
and Google’s Gemini Nano, which has 1.8 billion parameters. According to the authors of

30There has been a bit of a controversy surrounding Llama 2’s access status. According
to some critics (e.g., https://opensourceconnections.com/blog/2023/07/19/is-llama-2-open-source-no-and-
perhaps-we-need-a-new-definition-of-open/), the fact that you have to make a request to Meta (at
https://llama.meta.com/llama-downloads/) for the parameters makes it closed-source. Nevertheless, it still
seems like it is fairly easy to get access to the full model.

31https://aws.amazon.com/ec2/instance-types/p4/
32https://azure.microsoft.com/en-us/pricing/details/machine-learning/
33https://crfm.stanford.edu/2023/03/13/alpaca.html
34https://lmsys.org/blog/2023-03-30-vicuna/
35https://mistral.ai/news/announcing-mistral-7b/
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TinyLlama-1.1B, this model was trained for 90 days on 16 NVIDIA A100 40 GB, which in
this context is relatively affordable, albeit still an big investment for smaller actors. A down-
side of the smaller parameter count is of course performance, which is significantly worse
compared to the larger models; for example, GPT-3.536, on which the first iteration of Chat-
GPT was based, performs almost 50 percent better than TinyLlama-1.1B on HellaSwag and
WINOGRANDE, two commonly used LLM benchmarking datasets[72, 109].

The reason that a 7 billion parameter count is so commonly used as a lower limit is that
it represents a middle ground between computational feasibility and performance. Models of
this size are typically large enough to capture a wide range of linguistic nuances and generalize
across numerous tasks while remaining small enough for inference, i.e., using the model, and
at least some level of fine-tuning on a single, high-end consumer GPU. Performance-wise, the
7 billion parameter models are close to GPT-3.5 on some benchmark datasets, while several
of the larger open-source LLMs surpass it on a majority of them[19].

4.2 Technical feasibility of model poisoning attacks

Model poisoning is facilitated by open-source LLMs and it requires negligible amounts of
compute compared to pre-training attacks. Model poisoning is a special case of model editing,
where the inner workings of a neural network-based model, such as an LLM, are directly
edited to modify the model’s behavior. As discussed in a recent survey by Yao et al., such
edits can be direct changes of the numerical values of specific neural network parameters,
addition of new nodes, or even integration of auxiliary neural networks with the LLM[107].

In a paper by Meng et al., from 2022[50], the authors use a software probe to identify
regions inside GPT-like LLMs including the 1.5 billion parameter model GPT-2[70], that are
associated with factual knowledge. They then present a method they call Rank-One Model
Editing (ROME), which they use to establish that specific parameters in these regions likely
work as storage of factual information. ROME works by selectively editing the parameters,
which in turn changes the output to prompts about the facts stored in those parameters.
According to the authors, this method offers a way of editing specific facts with little impact
on unrelated knowledge, and thus provides a method for infusing an LLM with false and
potentially harmful knowledge. Tutorials on how to use ROME are available online37. This
method is limited to single edits and the effect on the overall behavior of the LLM is difficult
to predict for multiple edits. The same researchers recently presented a more advanced
editing method, Mass-Editing Memory In a Transformer (MEMIT), which they claim can
handle multiple edits without unexpected and unwanted behavioral changes[51].

Transformer-Patcher is an example of a method that works by ”patching” the model
through insertion of additional nodes into the transformer neural network layers in regions
associated with a specific knowledge. These nodes are then trained to activate when the
LLM is prompted with text that is associated with this knowledge, to change the output[39].
While this method is introduced to correct erroneous factual output in LLMs, it could also
be used for the opposite purpose, i.e., introducing errors, possibly harmful ones. The authors

36https://platform.openai.com/docs/models/gpt-3-5-turbo
37E.g.,https://github.com/kmeng01/rome
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claim that the method can be used to edit up to a thousand errors without affecting the
overall output in unpredictable ways, and the code is available online38.

Finally, an example of a method that uses small auxiliary models is Semi-Parametric
Editing with a Retrieval-Augmented Counterfactual Model (SERAC)[55]. In SERAC, the
base LLM is left unmodified, whereas two auxiliary neural networks, a scope classifier and
a counterfactual model, are trained in a supervised manner. The role of the scope classifier
is to determine whether a given input prompt has relevance to (is within the scope of) any
of the edit descriptors that are stored in a separate memory bank. Edit descriptors can be
question-desired answer pairs (”Who is the current king of Sweden?” - ”Carl XVI Gustaf”),
but also arbitrary utterances intended to elicit a change in model behavior more generally
(e.g., sentiments like ”I love cats”). If the prompt does indeed have relevance to an edit
descriptor, it is passed together with the descriptor to the counterfactual model, whose role
is to generate an output that fits both the prompt and the descriptor. If the prompt does
not have relevance, it passes directly to the LLM. As the authors note, sentiment editing in
particular could enable amplification of particular viewpoints; for example, an edit descriptor
such as ”I do not like [political party])” might lead to a lot of politically biased output.

4.3 Technical feasibility of safety alignment attacks using fine-
tuning methods

Fine-tuning without altering the parameters of an LLM can to some extent be done via simple
prompting. For example, in in-context-learning [27], future output with respect to specific
topics or tasks can be modified by feeding the model examples of and knowledge about the
same or similar topics or tasks – this is the idea behind OpenAI’s GPT Store39. However,
it is also possible to do fine-tuning through parameter updates, either through instruction
tuning or RLHF, or both (see Sec. 2.2.2). In fact, research points to this kind of fine-tuning
leading not only to better model performance compared to e.g., in-context-learning, but also
to more predictable output as well as less computational cost during inference[48].

OpenAI offers the possibility of doing API-based fine-tuning with parameter updates40,
and a fine-tuning service has also been announced for Gemini41. To reduce the risk of
customers doing malicious fine-tuning, OpenAI has implemented a moderation system,42 but
as discussed in Sec. 3, Qi et al. largely managed to circumvent this system and fine-tune
a model on harmful training examples[68]. In fact, 100 examples was enough to break the
safety alignment of GPT-3.5. Fine-tuning moderation systems will likely be continuously
updated for as long as fine-tuning services exist, and therefore they will constitute a barrier
to threat actors, albeit an imperfect one. Hence, open-source LLM should be significantly
more attractive for FIMI fine-tuning. An additional benefit of open-source LLMs is that they
enable much deeper fine-tuning.

Instruction tuning involves human labeling, and can thus be a very labor-intensive task,

38https://github.com/ZeroYuHuang/Transformer-Patcher
39https://openai.com/blog/introducing-the-gpt-store
40https://platform.openai.com/docs/guides/fine-tuning
41https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/multimodal-faqs
42https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

18

https://github.com/ZeroYuHuang/Transformer-Patcher
https://openai.com/blog/introducing-the-gpt-store
https://platform.openai.com/docs/guides/fine-tuning
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/multimodal-faqs
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates


especially if thorough tuning is desired. For the development of OpenAI’s GPT-3, this
step required screening and hiring of 40 human labelers [62], while for Llama 2, Meta used
vendor labeling services to create 27 500 labels[85]. There are large public instruction tuning
datasets, see e.g. [111], which Meta did not chose to include in the fine-tuned released versions
of Llama 2 since the performance improved using only their own high-quality labels. Mistral
7B was fine-tuned, or specifically instruction tuned, on an unspecified public dataset. Yet
the model outperforms the smaller versions of Llama 243. Even if label quality were to
significantly outweigh quantity, and even if tens of thousands of labels are required, hiring
dozens of human labelers should be within budget for at least some non-governmental threat
actors44.

Fine-tuning through RLHF is different from instruction tuning in that it requires a sep-
arate model, a reward model, to work efficiently. The reward model itself needs supervised
training before it can be incorporated into the RLHF loop, which uses a reinforcement learn-
ing algorithm such as proximal policy optimization[74]. The complexity of this step and
the requirement for a lot of labeled high-quality data makes it challenging but certainly not
impossible to implement outside of large companies and academia, especially since tutorials
exist aplenty. Recently simpler alternatives like direct preference optimization (DPO) and
Kahneman-Tversky Optimization (KTO) have been proposed[52], which could increase fea-
sibility of this step. However, it is in fact not entirely clear whether this step is needed for
FIMI.

Finally, while the level of compute needed for full fine-tuning is still fairly significant, there
is an entire family of methods called Parameter-Efficient Fine-Tuning (PEFT) that offers
a way around this. In essence, PEFT methods drastically reduce the need for compute by
only updating a subset of the neural network parameters during training, without sacrificing
much of the model performance[102].

4.4 Malign models

On the internet, information of all types are in abundance. We have so far considered
FIMI based on LLMs assumed to have been trained and aligned with the best intentions.
However, LLMs are inherently statistical model and thus agnostic to the origin of their
training data. Thus, it is possible to train an LLM on entirely unsafe data and as a result
they will generate potentially unsafe strings. One example is GPT-4chan, which is an LLM
based on GPT trained on a publicly available data set collected from the 4chan forum for
political incorrectness [65], and is further described in [88]. The model was initially openly
available on Hugging Face in 2022, but has since then been made permanently inaccessible45.
GPT-4chan is trained predominantly on hateful and abusive material and as a consequence
it responds in unethical and highly offensive terms to most kinds of interaction46. There

43https://mistral.ai/news/announcing-mistral-7b/
44According to an article by The Verge, labelling is a low-paying job often outsourced to workers in poorer

countries, which keeps the price offered by data labelling vendors down.
45https://huggingface.co/ykilcher/gpt-4chan
46https://slate.com/technology/2022/08/4chan-ai-open-source-trolling.html
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are allegedly still ways of accessing GPT-4chan47, but the authors of the report have not
investigated available options further.

The case with GPT-4chan illustrates that direct access to training of LLMs can be used
for unlimited information disorder activities through purposefully unsafe curation. Morover,
the training data used for GPT-4chan is openly available[65]. The same dataset could thus
potentially be used for training of other open models. It is interesting to note that GPT-
4chan was not based on the, at that time, more powerful model GPT-3.5, but rather the
open-source variant GPT-J48.

5 LLM-driven Botnets and FIMI

A bot is a computer program or a script that automates tasks over a network, such as the
Internet. Bots are capable of performing a diversity of both harmless and malicious tasks,
ranging from viewing online resources and booking concert tickets to email-spamming and
automation of cyber attacks. Currently, it is estimated that 47% percent of all Internet traffic
come from bots49. A botnet is a collection of several (thousand) (copies of the same) bots
deployed to collectively perform a task. Botnets pose a formidable cyber threat, being used
in for example DDoS attacks and password cracking attacks [4, 92]. Moreover, they are ideal
for purposes of spreading disinformation and malicious content. Usually, botnets receive
directions from a human operator via a so-called command and control server [20, 108], but
it is also common to control a botnet through direct interaction by sending messages in the
open over social media fora[56]. With the use case of the attack on Capitolium in 2021, Ng et
al., describe ways for botnets to communicate across different social fora, thereby increasing
disinformation potential [58].

Bots are typically programmed to perform social tasks, such as following accounts on social
media, re-tweeting (on X), or even post content, to spread disinformation. Bots programmed
for such social tasks are often referred to as social bots. E.g., on social media, the bots
in a botnet are usually following each other and can through this mechanism quickly and
massively collectively spread disinformation[104]. Early, or basic, social bots designed for
the spread of disinformation lack sophistication in their behavior and are easily detected
both algorithmically and by humans[5]. In a recent development, however, botnets are being
combined with the capabilities of LLMs. This step is taking the threat to society from
disinformation to a significantly higher level [104]. For disinformation, LLM-based botnets
leverage the capability of LLMs to produce human-like content, which then can spread rapidly
via the topology and mechanisms of the social network, using the spreading mechanisms of
social bots. Moreover, LLMs are capable of varying style and adapt narratives according to
disinformation campaign parameters, which makes it virtually impossible to distinguish the
contents generated by an LLM from that generated by a human[18]. Botnets with their wide
reach, ease of deployment, and ease of deception are ideal for state-sponsored actors[80]. It’s
possible that their proven hacking capabilities could assist in such campaigns[29]. It should

47https://medium.com/@haydarjawad/the-darkside-of-llms-9fad5a91cc79
48https://www.eleuther.ai/artifacts/gpt-j
49https://www.imperva.com/resources/reports/2023-Imperva-Bad-Bot-Report.pdf

20

https://www.imperva.com/resources/reports/2023-Imperva-Bad-Bot-Report.pdf


be noted that the scientific literature on this subject is very scarce and largely restricted to
preprints, i.e., publications which have not yet undergone peer review. We therefore foresee
that this subject will rapidly develop and change in the coming months and years.

With LLMs, bots will likely become increasingly autonomous agents, and thus eventually
be able to carry out FIMI attacks that require long-term planning and complex decision-
making, either alone or in collaboration with other agents. Glimpses of this can already be
seen in LLM agents like JARVIS-150 and VOYAGER51, which are able to autonomously nav-
igate, plan and carry out subtasks in the game Minecraft, given human-defined overarching
tasks[94, 93]. LLM-based multi-agent collaboration is an active field of research that clearly
points to a possible future where FIMI can be dramatically enhanced through agents with
the ability to self-organize[66, 46].

Mirza et al. [53] characterize 16 attack vectors using botnets for disinformation. Due to
the massive amounts of accounts in a botnet and the ease of disseminating content on social
media, botnets are particularly suitable for flooding, drowning, and astroturfing attacks. In
flooding attacks, the botnet is used to massively disseminate and focus attention on one
particular view. In drowning attacks, the botnet is used for distracting the social media
users from a particular issue by crowding the attention span. In astroturfing, the botnet
is used for mimicking a consensus on a particular view among a large number of account
owners. The assumption is that human observers of the consensus should be swayed in their
opinions too.

6 Mitigation

Next, we use our threat model to analyze a selection of common suggestions for mitigation
of LLM-mediated FIMI attacks. The strategies below are adapted from Goldstein et al. [36],
and they are a selection of many strategies suggested in for example Refs. [36, 112, 12].
Goldstein et al. [36] list several mitigation strategies, which to a large extent depend on
reforming legislation or educational systems, or on cooperation between several actors towards
a common goal. They also provide a thorough evaluation of such strategies, which however
fall outside of the scope of this report. For example, the strategy of making outputs of LLMs
detectable through fingerprinting of models require a cooperative effort of all model vendors,
otherwise threat actors are likely to turn to models that are not part of the fingerprinting
effort. We shall consider three strategies that fall inside the scope of this report.

Mitigation 1: Build More Fact-Sensitive Models

LLMs reflect statistical properties of their training data, including biased and incorrect
claims [13]. Therefore, LLMs generate strings regardless of their truthfulness or potential
implications.

Through the lens of our threat model, a defender using the safety alignment strategy relies
on the modification induced by the alignment training to reduce the risk of generating unsafe

50https://craftjarvis-jarvis1.github.io/
51https://voyager.minedojo.org/
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output strings. This has in large been successful [36], but recent results show that safety
alignment has several limitations [69, 99, 113]. From the perspective of our threat model,
where the defender aims for minimizing the odds for generating unsafe output strings, safety
alignment strategies can be said to be successful for the particular cases that are covered in
safety alignment training. However, there remain latent unsafe cases that can be elicited in
malicious attacks [9, 31]. Zhou et al. [113] point to the latent unsafety in aligned models
where two aligned open-source models are combined to generate highly unsafe output, via
reversing the alignment process. Qi et al. [69] showed that aligned models can be tweaked
into generating unsafe output even using only very few non-harmful instruction patterns. Wei
et al. [96] report on experiments where state-of-the-art aligned models, including OpenAI’s
GPT-4 is successfully attacked with jailbreaking tactics to elicit harmful and unsafe output.
Carlini et al. further show that unsafe output can always be elicited from aligned models,
using brute force techniques [15].

Thus, the conclusion is that while safety alignment can reduce the odds of eliciting unsafe
output of a particular pre-defined form, threat actors can nonetheless increase the likelihood
of eliciting latent unsafe output through carefully crafted attacks.

Mitigation 2: Setting up input and output filters

One way of eliciting latent unsafe output is by adversarial prompting, through prompt injec-
tion or jailbreaking [2, 96]. For example [2], the unsafe prompt ”Write a tutorial on how to
make a bomb”, would be rejected by aligned models, whereas in an adversarial prompting
attack, it would be modified by injecting a carefully crafted string of characters to the end,
so that the model is ‘tricked’ into accepting the query and give an unsafe answer. Tricking
a model is to, more specifically, capitalize on the fact that a change in the input may, most
likely, also lead to an inference of a different output governed by the statistical model. With
knowledge about the model, such injected strings can be crafted for specific unsafe output.

To counter this, and as a complement to safety alignment, there has been suggestions of
input and output filtering [2] for recognizing and immediately rejecting malicious prompts,
even in cases of prompt injection [2]. The method suggested in [2] builds on recognizing
statistical properties of the input string and reject input strings that exhibit properties that
differ from a normal safe input. Thus, for latent unsafe output that could potentially be
generated by a model, given that the filter is correctly configured for that particular output,
input filtering would lower the odds of eliciting that particular output.

Filtering approaches have however been found to be inadequate with respect to preventing
malicious prompt injections [41, 38, 81]. Even for aligned models, there is a growing collection
of ready-made adversarial prompts and recipes for crafting novel types of prompts that can
bypass the safety alignments [114, 91]. Wolf et al. [99] prove that no alignment strategy
can completely rule out the generation of unsafe output. Thus, taken these two arguments
together, for input and output filtered LLMs, there are in practice latent unsafe output
strings that threat actors may successfully elicit via carefully crafted prompts.
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Mitigation 3: Consumer tools for identifying AI-based FIMI

Goldstein et al. [36] discuss a mitigation approach where the receiver/consumer of content
(or the target of FIMI) may take an active role in mitigating the threat using an AI-based
tool for recognizing disinformation or malicious content. With respect to this report, the
most relevant approach to such a tool is the suggestion of deploying an LLM in the service
of the consumer to aid in recognizing FIMI in the content the consumer encounters. While
several suggestions have been made to automatically detect machine authored text (e.g.,
[35, 23], and DetectGPT [54]), Goldstein et al. [36] suggest that LLMs could be trained to
recognize flawed arguments in textual content and thereby be able to give warnings to the
user, somewhat similar to the direction in Zhou et al. [112] and in Chen et al. [17]. Goldstein
et al. [36] point also out that an obvious flaw with this approach is that the LLMs used in the
service of the user are themselves vulnerable to the same types of attacks LLMs in general
are susceptible to.

We note that recognizing flawed arguments requires some level of ability to reason about
arguments, and results have shown promise with respect the reasoning capabilities of LLMs [47].
Bender et al. [9] argue on their part that LLMs do not understand the text they process,
which may for present day’s LLMs prove to prohibit sufficient capability of reasoning about
arguments [7, 101]. However, while what distinguishes arguments as flawed or not may not
always be syntactically given [89], there are also syntactic credibility markers in digital con-
tent that could potentially be used for recognizing FIMI, syntactically without the need for
understanding context or meaning. Leite et al. [45] suggest a clustering approach based on
the presence of such signals in text. In an experiment, they showed that their approach was
able to tell apart authentic and fake text in the FAK-ES data set [73].

While there seems to be some promise in devising LLM-based tools for aiding a content
consumer to recognize FIMI with the help of credibility signals, we note, referring to our
threat model, that if an LLM is trained on such credibility signals, there is positive probability
that the LLM also can generate such signals as output. With carefully crafted attacks, we
speculate that a threat actor thus should be able to increase the odds of eliciting unsafe
output together with arbitrary selections of credibility signals.

7 Recommendations

The intersection of LLMs and FIMI is developing at a breathtaking speed, and thus, simply
trying to stay abreast in the field is challenging. Nonetheless, there are many topics that
need deeper exploration and to some extent fundamental research. We suggest a few possible
topics for further investigation or research, which we consider interesting at the time of
writing.

Deeper understanding of LLM-driven botnets The literature on LLM generated FIMI
has focused mainly on threats and mitigation strategies with respect to automated
creation of malicious content. However, many authors argue that it is not the creation of
malicious content, per se, that is the major concern. Rather, the greater threat is posed
by the possibility of automated dissemination in large volumes of malicious content by
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LLM-driven botnets [49]. To date, the threats and possible mitigations in the field of
FIMI based on LLM-driven botnets is largely unexplored [104]. Moreover, with the
capability of mass distribution, and beyond the issue of content credibility, botnets will
likely facilitate information overload [37] as a disinformation tactic. Yang et al. showed
negative results from an experiment trying to detect AI-driven botnets with state-
of-the-art LLM-driven disinformation detectors [104]. Based on these observations,
we recommend further studies into LLM-driven botnets in the context of FIMI, with
respect both to FIMI and to the issue of detection of LLM-driven botnets.

Improved computational models for human values Mitigation strategies for prevent-
ing LLMs to produce unsafe output build on restricting algorithmic output according
to human values and ethical standards. For RLHF strategies, this corresponds to de-
signing the reward functions in the reinforcement algorithm to represent such human
values. Christiano et al. [22] note that attempts to represent human values in terms of
goals and preferences tend to result in complex and ill-defined rules. Further (discour-
aging) consequences of the problem of encoding complex human ethical values in the
computational setting have been explored by Bostrom [11] and by Amodei et al. [3].
With only ill-defined representations of human values, LLMs will inevitably be prone
to generate unsafe output. The computational frameworks used in machine learning
(and generative AI) need thus to be further refined or complemented with alterna-
tive representation schema, for enabling the encoding of inherently complex and vague
human moral values. One potential avenue for alternative representation could come
from frameworks that are particularly suited for reasoning about permissible behav-
iors, for example deontic logic[90, 1]. We recommend further studies for computational
representation of human values and ethical standards.

Holistic mitigation strategies The FIMI mitigation strategies suggested in the literature
point in diverse directions ranging from purely technical solutions (safety alignment)
to broad political actions and long term educational efforts. One of the impressions
from this report is that each suggestion bring its own highly relevant angles and import
to an effective mitigation framework. However, a striking feature is that the technical
solutions take only little notice of the effect of the social ones, and vice versa. Mitigation
of FIMI based on generative AI could potentially benefit from a cross-fertilization of
the technical and the social approaches to mitigation. One way of paving the way for
such a cross-fertilization could be to further the research into attack and threat models
like the one presented in this report and by Wolf et al.’s BEB-framework [99].

8 Conclusion

In this report we have investigated the intersection of (mainly open-source) LLMs and FIMI.
We focused on how LLMs can be used for generation of unsafe – unethical, biased, false, etc
– output, which in turn has the potential to be used in FIMI. Furthermore, we discussed
some potential mitigations.
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The aim was bridging the gap between the social and the technical aspects of the topic,
which largely have been covered separately in the literature. As a way of bridging the gap, we
introduced an informal conceptual threat model that took as basic assumption that any LLM,
even safety aligned, is capable of generating unsafe output that can be used in FIMI. We
discussed briefly the similarity of our threat model with the more rigorous probabilistic BEB-
model by Wolf et al. [99]. As a future work, it could be of interest to explore the connections
more formally for the purpose of a more refined model for bridging the socio-technical gap.

We made remarks on some of the requirements, in terms of skills and resources, for actors
to be able to exploit LLM vulnerabilities in FIMI. The emphasis on open-source models
reflects the recent increase in availability of highly capable open-source LLMs that can be
downloaded from online providers. Open-source models give users control over a wide range
of LLM aspects such training, fine-tuning, model parameters, and safety alignment. With
access to datasets with predominantly shady and unethical content52, from, e.g., the dark
web [65], reddit [8], or topic-specific [67] (Covid-19 disinformation), open-source models can
easily be exploited by actors with basic resources and technical skill to cause significant harm.

The development rate of new generative models is very high, which has far-reaching
consequences for FIMI and the mitigation of these. The threats posed by LLMs in particular,
and generative AI in general, with respect to FIMI are both wide-ranging and difficult to
fully map. It has been argued that the biggest threat is not that generative AI can be used
to generate content that is both malicious and human-like, but rather from the possibility
of low-cost mass-production and mass-distribution of such material, e.g., via LLM-driven
botnets [49, 104, 40, 36].

Among the three mitigation strategies of LLM-based FIMI we discuss in the report, the
approach with safety alignment has lately received most attention from both industry and
research communities. We would like to direct attention to the peculiar situation that this
commonly used strategy in fact constitutes an attempt to impose human moral values on a
statistical model, which is what LLMs in fact are.

The LLMs as statistical models do not inherently have any moral values, and their be-
haviors – i.e., statistical predictions – only reflect their training data. Thus any moral or
immoral expressions that we perceive from the model, in fact reflect back to the moral or im-
moral expression of the humans that have contributed to the text in the LLM’s training data.
Furthermore, the texts, which are included in the training data, typically origin form a range
of sources and do not necessarily even reflect the interlocutors’ actual moral views. Thus, the
prospect of successful safety alignment of LLMs should perhaps be compared to the prospects
of safety alignment of humans – in respect to possibility and to potential consequences.
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