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A B S T R A C T

The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the
performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted
harmonic mean of two quantities: one for ranking observed events versus other observed events, and the
other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis
of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this
decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art
methods, together with the new variational generative neural-network-based method (SurVED) proposed in
this paper. The performance of the models is assessed using four publicly available datasets with varying
levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep
learning models utilize the observed events more effectively than other models. This allows them to keep
a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine
learning models deteriorate when the censoring level decreases due to their inability to improve on ranking
the events versus other events.
1. Introduction

More and more data is being collected to improve the estimation
of the probability of survival and the expected remaining lifetime, for
humans as well as equipment. Making such estimates is the purpose
of Survival Analysis. This is an analysis of the time to an event, e.g., an
individual’s death or the breakdown of a piece of equipment. While sev-
eral statistical methods for survival analysis have been developed [1],
the availability of large quantities of data has spurred the develop-
ment of machine learning (ML) based approaches that consider more
intricate covariate effects [2].

An important aspect of survival analysis is handling censored cases,
e.g., hospitalized patients who do not experience a relapse before the
end of a study, equipment that is replaced before a breakdown, or
equipment that has not experienced a breakdown yet. Censoring is
very common in clinical studies and can occur for various reasons.
It is possible for a patient not to experience the event during the
study’s timeframe (for example, death or relapse). Also, a patient might
experience a different event, making it impossible to follow up on the
event of interest.

Censoring also makes it more difficult to evaluate the goodness-of-
fit when the target variable is not fully observed. Several evaluation
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metrics have been proposed to assess various aspects of a model’s per-
formance [3]. However, the Concordance Index (C-index) is one of the
most used metrics as it encompasses both observed events and censored
cases. In doing so, it quantifies the rank correlation between actual
survival times and a model’s predictions. Multiple C-index estimators
have been proposed, like Harrel’s C-index [4], Uno’s C-index [5] (a
modified weighted version of Harrel’s C-index), and Gonen and Heller’s
measure [6]. The latter serves as an alternative estimator based on the
reversed definition of concordance. Finally, a time-dependent version
of the C-index was proposed in [7], which takes the whole survival
function into consideration.

Harrel’s C-index, the focus of this study, is perhaps the most often
used index and has an intuitive and straightforward interpretation. It
measures the ability of a predictor to order subjects by estimating the
proportion of correctly ordered pairs among all comparable pairs in
the dataset. In the presence of censoring, there are two types of times;
event time and censoring time. This results in two types of comparable
pairs: event vs. event (𝑒𝑒) and event vs. censored (𝑒𝑐). A predictor
may not perform equally well in ranking both types of comparable
pairs. Comparisons of given models’ performance using the C-index
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tend to show few significant differences in those datasets with a high
ratio of censored cases. More significant differences however appear on
datasets with low censoring ratios. This phenomenon can be attributed
to unseen differences in the models’ abilities to rank the different types
of pairs (𝑒𝑒) and (𝑒𝑐).

We therefore propose a decomposition of the C-index into a
eighted harmonic mean of two quantities: the C-index for ranking
bserved events (𝐶𝐼𝑒𝑒), and a C-index for ranking observed events
ersus censored cases (𝐶𝐼𝑒𝑐), weighted by 𝛼 ∈ [0, 1]. This decomposition
akes it easier to understand an algorithm’s strengths and weaknesses
nder different censoring levels. As such, the role of the weighting
actor 𝛼 in assessing the balance of a predictor when dealing with the
wo categories of pairs, namely (𝑒𝑒) and (𝑒𝑐) becomes clearer.

From a modeling perspective, the primary outcome of such survival
analyses is the Survival Function denoted as 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡), which
represents the probability of surviving beyond time 𝑡, where 𝑇 is the
vent time. Over time a number of classical statistical and machine
earning models have been developed to estimate the survival function
(𝑡) in a non-parametric, semi-parametric, or parametric way [8–13].
ore recently however, deep learning models have been introduced

or survival time modeling [14–23]. DeepSurv [15], for example, is a
irect extension of the Cox Proportional Hazard (CPH) model [10] that
mploys a deep neural network in place of the CPH linear predictor. As
uch, DeepSurv maintains the constraint of the proportional hazards
ssumption. Unlike DeepSurv however, some deep learning models
iscretize the survival timeline. Most notably, DeepHit [16] estimates
he probability mass function based on a discrete output. Predictions
rom such discrete-time models, in contrast to continuous-time models,
re however constrained by the choice of the upper limit of the output
imeline.

Deep generative models facilitate the estimation of date distribu-
ions. In the case of survival analysis, deep generative models can
e utilized to estimate the distribution of the event times in both
arametric and non-parametric ways [14,18]. The Deep Adversarial
ime-to-Event model (DATE) [17] for example, is a survival model
ased on Generative Adversarial Networks (GAN) [24]. DATE estimates
he event distribution in a non-parametric manner using adversarial
raining and is trained to generate 𝑝(𝑡|𝐱) while penalizing fake sam-
les (𝐱, 𝑡). However, such GAN models suffer from instability issues,
uch as the Mode Collapse and the Non-Convergence problems, mak-
ng them challenging to train and potentially lead to a poor local
quilibrium [25,26].

Recently, the Variational Survival Inference (VSI) model [20] was
ntroduced, adopting variational inference to approximate 𝑝(𝑡|𝐱). VSI
s a discrete-time model that employs two encoders, 𝑝(𝑧|𝐱) and 𝑞(𝑧|𝐱, 𝑡),
nd encourages these two distributions to be similar by using Kullback–
eibler divergence which means the model can better account for
nteractions between covariates and event times. In addition, the VSI
odel discretized output constrains the prediction timeline to be lim-

ted by the maximum time in the training data. To highlight the
mportance of the interactions between the covariates and the event
imes captured by the 𝑞 branch, the authors of the VSI model developed
variant of VSI, labeled VSI-NoQ which lacks the encoder’s q branch.

t is worth noting that although the VSI performs significantly better
han VSI-NoQ, the role of the 𝑞(𝑧|𝐱, 𝑡) branch is unclear.

In this work, a new survival model is proposed: SurVED (Survival
ariational Encoder–Decoder). SurVED is essentially a translation of the
ariational Auto Encoder (VAE) [27] into the field of survival analysis.

t is a conditional generative model with a single encoder and a single
ecoder, which learns to model the distribution of events conditioned
n the covariates 𝐱.

SurVED and VSI are both variational-inference-based models. How-
ver, SurVED derives its objective function from the DATE model [17].
his adaptation enables SurVED to deal with continuous time where,
nlike the VSI model, no discretization is required. Moreover, SurVED
2

oes not impose any upper-limit constraint on the timeline of the
odel predictions. The loss function has separate terms with different
eights for censored and non-censored samples. Additionally, SurVED
nd VSI differ in terms of architecture. Specifically, while VSI comprises
wo encoders 𝑝(𝐳|𝐱) and 𝑞(𝐳|𝐱, 𝑡), where 𝑞 is utilized to capture the
nteractions between the covariates and the event times, SurVED uses
nly one encoder. This makes SurVED more similar to the variant
SI-NoQ, albeit with additional regularization on the latent space,
ontinuous output, and a different loss function.

In summary, this work presents two contributions. Firstly, it derives
decomposition of the concordance index which provides insights into

he distinctions between seemingly similar-performing models. It also
elps to understand why there are larger-magnitude differences be-
ween classical and deep learning models in the case of low censoring.
ltimately, by showing areas of strengths and weaknesses, the C-index
ecomposition has the potential to serve as a guide in the development
f new survival models and offers insights to enhance existing ones.
dditionally, this work introduces a new continuous-time variational-
ased model that overcomes the limitations of its predecessors, DATE
nd VSI, and achieves a ranking performance comparable to the state
f the art.

. Method

In this section, we introduce the Concordance Index Decomposition
s a new approach to highlight the difference between survival mod-
ls. Additionally, we present the SurVED model (Survival Variational
ncoder–Decoder) and provide an overview of the four datasets used
or numerical tests and comparisons.

.1. The concordance index decomposition

The C-index is a measure of the probability that the predicted event
imes (𝑡𝑖, 𝑡𝑗) of two randomly selected subjects maintain the same
elative order as their true event times (𝑡𝑖, 𝑡𝑗), i.e., 𝑃 (𝑡𝑖 > 𝑡𝑗 |𝑡𝑖 > 𝑡𝑗 ). It
s important to note that not all pairs can be compared when censoring
s present; a pair (𝐱𝑖, 𝐱𝑗 ) is comparable (usable) if the earliest time
epresents an event, or both times are events. Conversely, a pair is
eemed not comparable if the earliest time is censored or if both are
ensored cases [28].

The C-index can be decomposed into two parts; one to measure the
elative ordering of cases with observed events, and another to measure
he ordering of cases with observed events relative to censored cases.
his decomposition is useful when comparing how methods perform in
ituations with a high proportion of censored cases, to situations with
low proportion of censored cases.

We define the random variable 𝑜𝑖𝑗 = 𝑡𝑖 > 𝑡𝑗 |𝑡𝑖 > 𝑡𝑗 that takes the
alue 1 if the 𝑖𝑗 pair is ordered (concordant) and 0 if it is discordant.
e also define the random variable 𝑘𝑖𝑗 , which takes the value (1) if

he (𝑖𝑗) pair is an event–event (𝑒𝑒) pair and (0) if the (𝑖𝑗) is an event-
ensored (𝑒𝑐) pair. To simplify the notation, 𝑃 (𝑜) represents 𝑃 (𝑜𝑖𝑗 = 1),
(𝑒𝑒) represents 𝑃 (𝑘𝑖𝑗 = 1), and 𝑃 (𝑒𝑐) represents 𝑃 (𝑘𝑖𝑗 = 0). Note that
(𝑒𝑒) + 𝑃 (𝑒𝑐) = 1. With these definitions, the C-index can be written as
𝐼 = 𝑃 (𝑜), and hence:
1
𝐶𝐼

= 1
𝑃 (𝑜)

=
𝑃 (𝑒𝑒) + 𝑃 (𝑒𝑐)

𝑃 (𝑜)

=
𝑃 (𝑒𝑒)
𝑃 (𝑜)

+
𝑃 (𝑒𝑐)
𝑃 (𝑜)

=
𝑃 (𝑜|𝑒𝑒)
𝑃 (𝑜|𝑒𝑒)

𝑃 (𝑒𝑒)
𝑃 (𝑜)

+
𝑃 (𝑜|𝑒𝑐)
𝑃 (𝑜|𝑒𝑐)

𝑃 (𝑒𝑐)
𝑃 (𝑜)

=
𝑃 (𝑜|𝑒𝑒)𝑃 (𝑒𝑒)

𝑃 (𝑜)
1

𝑃 (𝑜|𝑒𝑒)
+

𝑃 (𝑜|𝑒𝑐)𝑃 (𝑒𝑐)
𝑃 (𝑜)

1
𝑃 (𝑜|𝑒𝑐)

= 𝑃 (𝑒𝑒|𝑜) 1 + 𝑃 (𝑒𝑐|𝑜) 1

𝑃 (𝑜|𝑒𝑒) 𝑃 (𝑜|𝑒𝑐)
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= 𝑃 (𝑒𝑒|𝑜) 1
𝑃 (𝑜|𝑒𝑒)

+ (1 − 𝑃 (𝑒𝑒|𝑜)) 1
𝑃 (𝑜|𝑒𝑐)

We define 𝐶𝐼𝑒𝑒 as a C-index for event–event cases, 𝐶𝐼𝑒𝑐 as a C-index
for events-censored cases, and we introduce the notation 𝛼 for the
conditional probability that the pair is an event–event pair (𝑒𝑒) given
that it is a correctly ordered pair:

𝐶𝐼𝑒𝑒 ≡ 𝑃 (𝑜|𝑒𝑒) (1)
𝐶𝐼𝑒𝑐 ≡ 𝑃 (𝑜|𝑒𝑐) (2)

𝛼 ≡ 𝑃 (𝑒𝑒|𝑜) = 1 − 𝑃 (𝑒𝑐|𝑜) (3)

This yields the following relationship, which shows that the full C-index
(𝐶𝐼) is a weighted harmonic mean of the C-indices defined for the
subsets 𝑒𝑒 and 𝑒𝑐:
1
𝐶𝐼

= 𝛼 1
𝐶𝐼𝑒𝑒

+ (1 − 𝛼) 1
𝐶𝐼𝑒𝑐

(4)

The C-index and its decomposed parts 𝐶𝐼𝑒𝑒, 𝐶𝐼𝑒𝑐 , and 𝛼 can be esti-
mated based on the number of correctly ordered pairs 𝑁+, incorrectly
ordered pairs 𝑁−, and the number of ties 𝑁=. Since there are two kinds
of comparable (usable) pairs: event–event pairs (𝑒𝑒) and event-censored
pairs (𝑒𝑐), then:

𝑁+ = 𝑁+
𝑒𝑒 +𝑁+

𝑒𝑐

𝑁− = 𝑁−
𝑒𝑒 +𝑁−

𝑒𝑐
= = 𝑁=

𝑒𝑒 +𝑁=
𝑒𝑐 (5)

here are multiple ways to handle ties, and we use the Somers’ 𝑑
easure [29], which considers the ties in the event cases to be incom-
arable pairs. It also considers the ties in the predicted values to be
inary random guesses; hence, half of them are counted as correctly
rdered.

𝐼 =
𝑁+ + 1

2𝑁
=

𝑁+ +𝑁− +𝑁= =
𝑁+

𝑒𝑒 +𝑁+
𝑒𝑐 +

1
2𝑁

=
𝑒𝑒 +

1
2𝑁

=
𝑒𝑐

𝑁+
𝑒𝑒 +𝑁+

𝑒𝑐 +𝑁−
𝑒𝑒 +𝑁−

𝑒𝑐 +𝑁=
𝑒𝑒 +𝑁=

𝑒𝑐
(6)

From expressions (1), (2), and (3) we thus have:

𝐶𝐼𝑒𝑒 =
𝑁+

𝑒𝑒 +
1
2𝑁

=
𝑒𝑒

𝑁+
𝑒𝑒 +𝑁−

𝑒𝑒 +𝑁=
𝑒𝑒

(7)

𝐼𝑒𝑐 =
𝑁+

𝑒𝑐 +
1
2𝑁

=
𝑒𝑐

𝑁+
𝑒𝑐 +𝑁−

𝑒𝑐 +𝑁=
𝑒𝑐

(8)

𝛼 =
𝑁+

𝑒𝑒 +
1
2𝑁

=
𝑒𝑒

𝑁+
𝑒𝑒 +𝑁+

𝑒𝑐 +
1
2𝑁

=
𝑒𝑒 +

1
2𝑁

=
𝑒𝑐

(9)

The factor 𝛼 is the conditional probability that the pair is event–
event (𝑒𝑒) given that it is a correctly ordered pair. This factor weights
the contribution of the correct ordering of event–event pairs relative to
the correct ordering of event-censored pairs in the C-index. Changes in
𝛼 are directly associated with variations in the model’s performance in
accurately ordering pairs and indirectly related to the ratio of observed
events to censored cases in the dataset. A predictor that can order
all events and censored cases correctly will have an 𝛼 value equal to
the fraction of event–event pairs within the comparable pairs, a value
we can denote as 𝛼∗. However, even an imperfect predictor can have
𝛼 = 𝛼∗ as long as it scores equally on event–event pairs and event-
censored pairs in proportion to their percentages; such a predictor can
be denoted as a ‘‘balanced’’ predictor.

The 𝛼-Deviation is defined as the difference between 𝛼 and 𝛼∗.
A predictor that excels at ordering event–event (𝑒𝑒) pairs more than
event-censored (𝑒𝑐) pairs will have 𝛼 > 𝛼∗, resulting in a positive 𝛼-
Deviation. On the other hand, a predictor that is better at ordering
event-censored (𝑒𝑐) pairs compared to event–event (𝑒𝑒) pairs will have
𝛼 < 𝛼∗, leading to a negative 𝛼-Deviation.

𝛼-Deviation ≡ 𝛼 − 𝛼∗ (10)

𝛼∗ ≡
𝑁𝑒𝑒 (11)
3

𝑁𝑒𝑒 +𝑁𝑒𝑐
here 𝑁𝑒𝑒 and 𝑁𝑒𝑐 are the number of the comparable (ee) and (ec)
airs in the dataset. In this paper, we study the absolute value of the
-Deviation. This is a measure of how unbalanced the predictor is when
aking mistakes.

.2. SurVED: Survival Variational Encoder–Decoder

Our model, SurVED, employs a conditional generator 𝐺𝜃 to estimate
(𝑡|𝐱), the distribution of death conditioned on the covariate vector 𝐱,
ith 𝜃 representing the parameters of the model. This generative model

an be sampled to produce the conditional death function 𝑓 (𝑡|𝐱), from
hich the conditional cumulative death distribution function (𝐹 ) and

he conditional survival function (𝑆) can be computed:

(𝑡|𝐱) = ∫

𝑡

0
𝑓 (𝜏|𝐱) 𝑑𝜏 (12)

𝑆(𝑡|𝐱) = 1 − 𝐹 (𝑡|𝐱) (13)

The model comprises two components: an Encoder 𝐸𝜃1 (𝐳|𝐱) which
ncodes the input 𝐱 into a multi-dimensional Gaussian latent space
epresented by (𝜇𝑧, 𝜎𝑧), and a Decoder 𝐷𝜃2 (𝑡|𝐳) responsible for decoding
sample 𝐳 from the latent space and generating a sample 𝑡 from the

onditional distribution 𝑓 (𝑡|𝐱). Here 𝜃1 and 𝜃2 constitute 𝜃; the total
arameters of 𝐺𝜃 . For each input 𝐱, 𝑛 values 𝑡𝑖 (𝑖 = 1,… , 𝑛) from 𝑓 (𝑡|𝐱)
re sampled. The survival function can be estimated using the Kaplan–
eier estimator considering the sampled times 𝑡𝑖 as observed event

imes. These 𝑛 samples (𝑡𝑖) are also utilized to estimate the expected
alue E𝑡∼𝑓 (𝑡|𝐱)[𝑡] for the purpose of model evaluation.

.2.1. The objective function
The objective function of the generative model 𝐺𝜃 consists of four

arts: 𝐿𝑒, 𝐿𝑐 , 𝐿𝐾𝐿, and 𝐶𝑙𝑏. The first two, 𝐿𝑒 and 𝐿𝑐 , represent construc-
ion losses that are separately evaluated for event cases and censored
ases. These losses are designed to optimize the balance between
vents and censored cases. The third term, 𝐿𝐾𝐿, originates from the
AE formulation and is the Kullback–Leibler divergence, serving as a
egularization term. The first three terms are:

𝐿𝑒 = E𝐱∼𝑃𝑒(𝐱)
[

|𝑡 − 𝐺𝜃(𝐱)|
]

(14)

𝐿𝑐 = E𝐱∼𝑃𝑐 (𝐱)
[

max(0, 𝑡 − 𝐺𝜃(𝐱))
]

(15)

𝐾𝐿 = 𝐾𝐿 (𝑃 (𝐳|𝐱), 𝑁(0, 1)) (16)

here the subscripts, e and c, indicate that the terms exclusively involve
vent cases or censored cases, respectively. The notation 𝑃𝑒(𝐱) denotes
hat 𝐱 was drawn from the event cases, while 𝑃𝑐 (𝐱) indicates that 𝐱
as drawn from the censored cases. Additionally, 𝐾𝐿(𝑝, 𝑞) represents

he Kullback–Leibler divergence between the two distributions 𝑝 and 𝑞.
he fourth term

𝑙𝑏(𝜃, 𝜀) =
1
|𝜀|

∑

(𝐱𝑖 ,𝐱𝑗 )∈𝜀

(

1 +
log 𝜎(𝐺𝜃(𝐱𝑖) − 𝐺𝜃(𝐱𝑗 ))

log 2

)

(17)

is a differentiable lower bound for the C-index [30]. Here, 𝜀 is the set
of comparable pairs, the symbol 𝜎 is the standard sigmoid function,
and |𝜀| denotes the set 𝜀 cardinality. Adding the 𝐶𝑙𝑏 term to the loss
function enables the model to directly optimize the C-index, encourag-
ing concordance in the model predictions. The SurVED model aims to
minimize the total loss:

𝐿 = 𝜆𝑒𝐿𝑒 + 𝜆𝑐𝐿𝑐 + 𝜆𝐾𝐿𝐿𝐾𝐿 − 𝜆𝑙𝑏𝐶𝑙𝑏 (18)

where the 𝜆𝑒, 𝜆𝑐 , 𝜆𝐾𝐿, and 𝜆𝑙𝑏 are tunable weights.
These objective terms have been used previously in the literature in

different settings. The 𝐿𝑒 and 𝐿𝑐 terms, Eqs. (14) and (15), match the
𝓁2 and 𝓁3 terms used in the DATE loss function [17]. However, they
can be traced back to earlier work by Van Belle et al. [12]. The fourth
objective term, Eq. (17), was suggested for the DATE model [17] as
well.
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Table 1
Dataset statistics.

Dataset Events (%) Samples Features Missing values (%)

FLCHAIN 27.55% 7874 25 0.6%
METABRIC 44.83% 1981 79 0.0%
NWTCO 14.18% 4028 9 0.0%
SUPPORT 68.11% 9105 59 6.5%

2.3. Description of datasets

The SurVED method has been evaluated against the reference meth-
ods on four publicly available medical datasets. The datasets are all
fairly large, and cover different censoring levels, number of samples,
and number of features; see Table 1. They have also been used in
several previous benchmark studies.

FLCHAIN: A dataset used in a study [31] to determine whether
the free light chain (FLC) assay is a predictor of better/worse survival
for the general population. The study showed that a high FLC was
significantly predictive of worse overall survival.

METABRIC: The Molecular Taxonomy of Breast Cancer Interna-
tional Consortium dataset [32]. This dataset is used to predict the
survivability of breast cancer patients using gene expression profiles
and clinical data.

NWTCO: Data from the US National Wilm’s Tumor Study to predict
survival based on tumor histology [33]. This data is available in the
package survival in R [34].

SUPPORT: This data comes from the Study to Understand Prognoses
nd Preferences for Outcomes and Risks of Treatment [35]. This study
imed to understand the survival of seriously ill hospitalized patients
nd validate the predictions of a new prognostic model against an
xisting prognostic model and predictions by physicians. The SUPPORT
ata is sometimes split into subsets since there is more than one
iagnosis, but it is used as one dataset here.

.4. Experimental settings

Seven models were compared: Cox Proportional Hazard model
CPH), Random Survival Forest (RSF), Deep Adversarial Time-to-Event
odel (DATE), DeepHit, DeepSurv, Variational Learning of Individual

urvival Distributions model (VSI), and our model Survival Variational
ncoder-Decoder (SurVED). The models were first compared based on
he C-index performance and then analyzed further using the C-index
ecomposition.

The same sampling scheme was applied to all the experiments: 30%
f the data was used as a hold-out test set, and the remaining 70% was
sed for hyperparameter tuning and training. The models were tuned
sing five-fold cross-validation, maximizing the C-index performance.
t each fold, three sets were used for training, one set for early stopping

or deep learning models, and the last set was used for validation. The
arly stopping set was not used for optimizing RSF. In the final testing
hase, a 100-fold testing on the hold-out test set was done, varying the

training data. At each fold, 90% of the training data was used to train
the models keeping 10% as a validation set for deep-learning models.

The categorical features were one-hot encoded, and the numerical
features were standardized with zero mean and unit variance. The tar-
get variable was scaled by the maximum value of the training set, and
power transformed. Moreover, the missing values were filled with the
training data median and mode for numerical and categorical features,
respectively. The deep learning models were configured with a common
architecture that included two hidden layers with 32 nodes, a hyper-
bolic tangent activation function, and a 0.5 dropout rate on the first
hidden layer. For the models that have special types of structure (DATE
and VSI), we used the suggested structures in their repositories. SurVED
has a latent size of four nodes and a single-layer linear perceptron as
its decoder. Details about the network structures, data standardization,
4

and transformation are available on our Github repository.1 DATE’s
mplementation from the authors’ GitHub repository2 was used, while
he Scikit-Survival library [36] was used for the CPH and the RSF
odels. Moreover, the VSI model implementation provided by the

uthors on Github3 was used. For DeepHit and DeepSurv, the PyCox
ibrary [37] was used. A random search was performed to optimize
he weights of the loss functions for DeepHit and SurVED. The number
f output bins for the two discrete models, VSI and DeepHit, were
ptimized with choices including [100, 200, 400, 1000]. Additionally, a
andom search was conducted for RSF to optimize parameters such
s max_depth, min_samples_split, min_samples_leaf, and
ax_features.

. Results and discussion

.1. Comparison on the four data sets

Tables 2, 3, 4, and 5, present a comprehensive list of methods’
cores based on the C-index (𝐶𝐼), C-index for event–event pairs (𝐶𝐼𝑒𝑒),
-index for event-censored pairs (𝐶𝐼𝑒𝑐), and 𝛼-Deviation on the four
atasets. In the context of the C-index, higher values indicate better
erformance. Conversely, when considering the 𝛼-Deviation, lower val-
es reflect a more ‘‘balanced’’ model, i.e., it performs more equally in
rdering event–event and event-censored pairs. The statistical signifi-
ance level was set to 5%, and hypothesis testing was carried out with
00-fold test values using the Wilcoxon rank-sum test.

We begin by comparing SurVED with DATE and VSI as it has
lose ties to both models. SurVED shares the same loss function with
he DATE model and employs a variational inference approach sim-
lar to the VSI model. The results depicted in Fig. 1 demonstrate
hat SurVED, with its regression-based loss function, outperformed the
iscrete-time-based VSI and the GAN-based DATE model across all
atasets.

It is worth noting that the VSI model exhibited unstable perfor-
ance on METABRIC datasets, depicted by the large variance of its

esults as shown in Fig. 1. This instability may be attributed to the fact
hat METABRIC is the smallest dataset with the largest time horizons
panning over 9200 days. In such cases, time discretization can lead to
nformation loss.

Remarkably, although SurVED outperformed DATE in the C-index
n NWTOC, FLCHAIN, and METABRIC they demonstrated contrasting
ehaviors regarding 𝐶𝐼𝑒𝑒, 𝐶𝐼𝑒𝑐 , and 𝛼-Deviation. While DATE showed
etter performance in 𝐶𝐼𝑒𝑒 on these three datasets, SurVED was better
n terms of 𝐶𝐼𝑒𝑐 . Additionally, due to its higher 𝛼-Deviation, SurVED
laced higher weight on the 𝐶𝐼𝑒𝑐 , resulting in a higher overall 𝐶𝐼
erformance.

Looking at the full list of results in Tables 2, 3, 4, and 5 we see
hat in the cases where there are no significant differences between
he models in the C-index, they show significant differences in the
ecomposition terms 𝐶𝐼𝑒𝑒 and 𝐶𝐼𝑒𝑐 .

For example, comparing RSF and DeepHit on the NWTCO dataset
hows that RSF has a significantly better 𝐶𝐼𝑒𝑒 with no significant
ifference observed on the 𝐶𝐼𝑒𝑐 . However, because DeepHit has a
igher 𝛼-Deviation, it places more weight on the 𝐶𝐼𝑒𝑐 , resulting in no
ignificant difference in the overall C-index. A similar scenario unfolds
hen comparing SurVED and CPH on the FLCHAIN dataset.

More interesting cases show contrasting differences in the decom-
osition terms leading to an insignificant difference in the C-index due
o weighted averaging. For instance, on the NWTCO dataset, DeepHit
xhibits a higher 𝐶𝐼𝑒𝑒 while CPH outperforms in 𝐶𝐼𝑒𝑐 . Consequently,
he total C-index shows no significant difference. A similar phenomenon

1 https://github.com/abdoush/SurVED.
2 https://github.com/paidamoyo/adversarial_time_to_event.
3
 https://github.com/ZidiXiu/VSI.

https://github.com/abdoush/SurVED
https://github.com/paidamoyo/adversarial_time_to_event
https://github.com/ZidiXiu/VSI
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Fig. 1. The results of 𝐶𝐼 , 𝛼, 𝐶𝐼𝑒𝑒, 𝐶𝐼𝑒𝑐 , and |𝛼-Deviation| in Eq. (4) of the SurVED, DATE, and VSI models on the four datasets (Censoring level decreases from the highest
ensoring (NWTCO) to the lowest censoring (SUPPORT)).
Table 2
The C-index (𝐶𝐼) values (%) of the compared models on the four datasets. Numbers show the median, the 2.5%, and the
97.5% quantiles of 100-folds. The highest numerical value in each dataset is boldfaced.

NWTCO FLCHAIN METABRIC SUPPORT

CPH 72.91 (72.57, 73.25) 78.37 (78.30, 78.46) 63.90 (63.02, 64.68) 84.29 (84.19, 84.57)
RSF 72.84 (72.23, 73.40) 78.43 (78.28, 78.62) 67.80 (67.22, 68.49) 84.17 (83.80, 84.55)
DATE 70.06 (68.85, 71.32) 76.84 (76.44, 77.38) 65.09 (63.49, 66.87) 84.38 (83.54, 84.96)
DeepSurv 72.05 (70.40, 73.24) 78.45 (77.99, 78.58) 64.40 (61.96, 66.11) 87.88 (87.55, 88.05)
DeepHit 72.88 (70.43, 73.36) 78.43 (78.27, 78.57) 63.99 (63.26, 64.80) 88.22 (88.01, 88.42)
VSI 68.69 (53.68, 71.35) 77.70 (75.09, 78.24) 52.04 (45.61, 65.94) 87.40 (84.71, 87.77)
SurVED 72.75 (69.26, 73.37) 78.40 (76.92, 78.53) 66.63 (63.72, 67.58) 88.13 (87.76, 88.27)
Table 3
The 𝐶𝐼𝑒𝑒 values (%) of the compared models on the four datasets. Numbers show the median, the 2.5%, and the 97.5%
quantiles of 100-folds. The highest numerical value in each dataset is boldfaced.

NWTCO FLCHAIN METABRIC SUPPORT

CPH 56.38 (56.08, 56.65) 57.48 (57.37, 57.58) 55.98 (54.84, 56.99) 82.28 (82.14, 82.78)
RSF 57.39 (56.60, 57.94) 57.90 (57.73, 58.08) 61.43 (60.62, 62.29) 80.54 (79.83, 81.28)
DATE 57.16 (56.04, 57.94) 57.89 (57.45, 58.45) 61.63 (59.34, 63.86) 80.58 (79.24, 81.58)
DeepSurv 56.67 (55.46, 57.64) 57.43 (56.96, 57.60) 57.78 (56.66, 59.12) 85.94 (85.56, 86.19)
DeepHit 57.28 (55.95, 57.72) 57.59 (57.47, 57.71) 59.17 (57.87, 60.40) 86.82 (86.63, 86.98)
VSI 56.90 (50.49, 58.52) 57.15 (56.40, 57.97) 51.03 (46.01, 60.15) 85.63 (81.67, 86.21)
SurVED 56.36 (55.36, 57.18) 57.37 (56.84, 57.62) 60.83 (57.74, 62.03) 86.70 (86.08, 86.94)
is observed on the FLCHAIN dataset when comparing RSF with DeepHit
and DeepSurv, where RSF excels in 𝐶𝐼𝑒𝑒 while DeepHit and Deep-
Surv demonstrate better performance in 𝐶𝐼𝑒𝑐 , thereby diminishing the
difference in the total C-index. This pattern is also observed in the
comparison between DeepHit and DeepSurv on the FLCHAIN and the
METABRIC datasets.

Contrasting differences in the decomposition terms do not always
diminish the difference in the total C-index. In some cases, a higher 𝛼-
Deviation can outweigh one model over another. For example, consider
the comparison of SurVED and DeepSurv on NWTCO, where DeepSurv
exhibits a higher 𝐶𝐼𝑒𝑒 while SurVED has a higher 𝐶𝐼𝑒𝑐 . Nevertheless,
SurVED’s higher 𝛼-Deviation shifts the balance in favor of the 𝐶𝐼𝑒𝑐
term, resulting in a higher C-index. Similar scenarios arise in various
cases like the comparison of CPH with RSF, DATE, VSI, and DeepSurv
on NWTCO. In all these cases CPH demonstrates a lower 𝐶𝐼𝑒𝑒 but a
higher 𝐶𝐼𝑒𝑐 and a higher 𝛼-Deviation resulting in a higher C-index.

Occasionally, outweighing one term does not compensate for the
differences in the terms, especially when the difference is substantial.
For example, consider the case of CPH compared to DATE, DeepHit,
and DeepSurv on the METABRIC dataset. While CPH has a higher 𝐶𝐼
5

𝑒𝑐
and a higher 𝛼-Deviation, it has a much lower 𝐶𝐼𝑒𝑒. In this scenario,
outweighing the 𝐶𝐼𝑒𝑐 term does not compensate for the considerable
gap in the 𝐶𝐼𝑒𝑒 term, resulting in CPH having a significantly lower total
C-index.

Poor performance on the METABRIC dataset was observed for the
DeepHit model. This is similar to the VSI model which shares the
discrete-time property with DeepHit. It is worth noting that this result
cannot be compared to the result reported in DeepHit paper [16] as
they used a different version of the METABRIC dataset, where they
re-scaled the time step to a month instead of a day as in our case. Ad-
ditionally, they used the time-dependent C-index (C𝑡𝑑) as an evaluation
measure.

Overall, the results indicate that classical models either outper-
formed or performed equally well compared to deep learning models
for the smaller datasets with higher censoring levels. RSF was the best
on METABRIC, while CPH was the best on NWTCO. On FLCHAIN, RSF
shares the best performance with DeepSurv and DeepHit. However,
deep learning models have a clear advantage on SUPPORT, the largest

dataset with the lowest censoring level.
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Fig. 2. The Win/Lose/Draw comparison based on 𝐶𝐼 , 𝐶𝐼𝑒𝑒, 𝐶𝐼𝑒𝑐 , and 𝛼-Deviation in Eq. (4) of the compared models on the four datasets.
Table 4
The 𝐶𝐼𝑒𝑐 values (%) of the compared models on the four datasets. Numbers show the median, the 2.5%, and the 97.5%
quantiles of 100-folds. The highest numerical value in each dataset is boldfaced.

NWTCO FLCHAIN METABRIC SUPPORT

CPH 74.34 (73.97, 74.71) 82.79 (82.70, 82.89) 68.70 (67.73, 69.75) 86.56 (86.36, 86.71)
RSF 74.18 (73.56, 74.76) 82.76 (82.60, 82.99) 71.75 (71.03, 72.58) 88.30 (88.16, 88.47)
DATE 71.19 (69.88, 72.57) 80.86 (80.40, 81.53) 67.31 (64.54, 69.63) 88.79 (87.94, 89.37)
DeepSurv 73.41 (71.61, 74.67) 82.89 (82.40, 83.03) 68.38 (64.36, 70.95) 90.11 (89.55, 90.43)
DeepHit 74.25 (71.68, 74.71) 82.84 (82.63, 83.01) 66.84 (65.90, 68.28) 89.82 (89.44, 90.13)
VSI 69.64 (54.03, 72.63) 82.06 (78.92, 82.67) 53.04 (45.10, 69.71) 89.39 (88.27, 89.94)
SurVED 74.17 (70.46, 74.80) 82.84 (81.07, 83.01) 70.06 (67.05, 71.65) 89.79 (88.95, 90.11)
Table 5
The 𝛼-Deviation values of the compared models on the four datasets. Numbers show the median, the 2.5%, and the 97.5%
quantiles of 100-folds. All values are scaled by a factor of 102. The lowest numerical value in each dataset is boldfaced.

NWTCO FLCHAIN METABRIC SUPPORT

CPH 1.81 (1.77, 1.85) 4.65 (4.63, 4.68) 4.75 (4.26, 5.17) 1.26 (1.11, 1.35)
RSF 1.69 (1.64, 1.76) 4.57 (4.52, 4.61) 3.59 (3.20, 3.96) 2.31 (2.06, 2.53)
DATE 1.47 (1.33, 1.61) 4.30 (4.21, 4.45) 1.92 (1.07, 3.25) 2.44 (2.00, 2.80)
DeepSurv 1.72 (1.53, 1.84) 4.67 (4.63, 4.72) 3.89 (2.14, 4.70) 1.18 (1.00, 1.35)
DeepHit 1.71 (1.62, 1.78) 4.64 (4.59, 4.68) 2.87 (2.20, 3.55) 0.85 (0.73, 0.93)
VSI 1.32 (0.52, 1.67) 4.62 (4.21, 4.77) 1.73 (0.11, 4.14) 1.16 (0.76, 1.93)
SurVED 1.78 (1.53, 1.83) 4.67 (4.47, 4.72) 3.28 (2.31, 4.20) 0.87 (0.61, 1.11)
To assess the models comprehensively, pair-wise comparisons were
erformed between the seven models on the four datasets. Each model
as compared against the other six models on each dataset, resulting

n 24 comparisons for each model. The results are summarized in Fig. 2
s Win/Lose/Draw.

The chi-square test was applied to the Win/Lose/Draw data in
ig. 2, treating draws as a 50% chance of winning or losing. Regarding
he C-index performances, SurVED, DeepHit, RSF, and DeepSurv show
similar performance, whereas CPH, DATE, and VSI lag behind. How-

ver, analyzing the other C-index decomposition terms reveals more
nteresting insights. For example, DATE has an excellent performance
n terms of the 𝐶𝐼𝑒𝑒 but falls short in the 𝐶𝐼𝑒𝑐 which impacts its overall

C-index. In contrast, the VSI model shows poor performance in both
terms. The results also show that the main differences between the
models stem from the 𝐶𝐼𝑒𝑒 part, while all models, except for DATE and
VSI, exhibit similar overall 𝐶𝐼𝑒𝑐 performance.

The Deep learning models outperformed classical models by a sub-
stantial margin on the SUPPORT dataset. To understand this notable
6

difference and to explore how the models behave under different levels
of censoring and dataset sizes, the following section employs the C-
index decomposition to investigate the models’ performances across
various conditions simulated using the SUPPORT dataset.

3.2. The effect of censoring and size

Among the datasets utilized in this paper, the SUPPORT dataset
is the largest and has the highest proportion of events. This charac-
teristic allowed us to investigate the impact of varying the censoring
and the dataset size across three different dimensions. Originally, the
dataset contained 9105 examples, with 6201 observed events and 2904
censored cases, resulting in 68% events, and 32% censored cases.
In the first experiment (Size Only), we varied the dataset size by
randomly removing examples while keeping the censoring level fixed.
This resulted in four datasets with different sizes (3642, 4462, 5828,
and 9105) and approximately the same event percentage of 68%. In the

second (Censoring Only), we varied the censoring level by randomly
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Fig. 3. The change of 𝐶𝐼 as the size of the dataset and the ratio of events change. The 𝑥-axis shows the sizes of the datasets and percentages of the events (for the SUPPORT
ataset) in the three experiments.
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ensoring observed events while maintaining the size. This resulted in
our datasets of the same size (9105) with varying event percentages
20%, 35%, 50%, and 68%). Lastly, in the third experiment (Size and
ensoring), we simultaneously varied both dataset size and censoring

evel, by randomly dropping observed event examples. This resulted in
our datasets with different censoring levels (events percentages) (20%,
5%, 50%, and 68%) and different sizes (3630, 4467, 5808, and 9105)
espectively. The models were trained and tested on each of the four
atasets in each experiment, and Fig. 3 illustrates how the C-indices for
he models changed with varying dataset sizes and fractions of event
ases (different levels of censoring). It is worth noting that the right-
and side of the three Figs. 3(a), 3(b), and 3(c) is the performance of
he models on the original SUPPORT dataset.

Two distinct types of behaviors can be observed in these exper-
ments (see Fig. 3): One related to the group {SurVED, DeepSurv,
eepHit, VSI}, i.e., the deep learning models except for DATE, and one

elated to the group {DATE, CPH, RSF}, i.e., the classical models plus
ATE. In the first experiment, Fig. 3(a), where only the dataset size was
hanged, all the models improved in C-index performance as the dataset
ize increased. However, they maintained their relative differences
etween the two groups. In the second experiment, Fig. 3(b), where
nly the censoring level was varied, the models’ performances remained
elatively constant, with DATE and the classical models exhibiting a
light drop in the C-index performances.

The most intriguing result was obtained in the third experiment,
ig. 3(c), where classical models behaved unexpectedly when both the
ize and the censoring level of the dataset were varied. The Deep learn-
ng models maintained a constant C-index performance as the data set
ize and the percentage of the observed events both decreased (reading
ig. 3(c) from right to left). In contrast, DATE and the classical mod-
ls’ performance improved eventually reaching a point where, in the
xtreme case of the smallest dataset and the lowest event percentage
the left-hand side of Fig. 3(c)), all models performed similarly.

To better understand these trends in the behavior concerning
hanges in censoring levels and dataset size, the performance of the
odels was further examined using the C-index Decomposition. The

im was to shed light on the underlying reasons behind such differences
n behavior.

Fig. 4 shows the C-index decomposition of the seven models on
UPPORT datasets in the three experiments (varying the dataset size
nly, varying the censoring level only, and varying both the size and
he censoring level). Two distinct trends in behavior are observed: one
orresponding to classical models, CPH and RSF. The other one corre-
ponds to the deep learning models except for DATE, which followed
he classical models’ behavior. Hence DATE will be included with the
lassical models when referring to the classical models’ behavior below.

In the first experiment (the leftmost column in Fig. 4), increasing
he size of the dataset led to an increase in both the 𝐶𝐼𝑒𝑒 and 𝐶𝐼𝑒𝑐 .

Furthermore, keeping the percentage of the events fixed maintained
similar values for the 𝛼 term in the decomposition through the four
datasets (approximately 0.5). This balance in the 𝛼 gave equal weight to
the two terms in the C-index decomposition resulting in improvement
in the total C-index for all models with increased dataset size.
7

In the second experiment (the middle column in Fig. 4), keeping
the size fixed and decreasing the censoring level (increasing events %)
slightly increased the 𝐶𝐼𝑒𝑒 performance for deep learning models and,
to a lesser extent, for classical models. On the other hand, the 𝐶𝐼𝑒𝑐
stayed almost constant for deep learning models, with a slight increase
for classical models. Nevertheless, changing the censoring level affected
𝛼 changing the weighting on the two decomposition terms across four
datasets. As a result, with smaller 𝛼, the total C-index was mainly
influenced by the 𝐶𝐼𝑒𝑐 at the high censoring level (low events % to
the left side of the figure), whereas 𝛼 increases (hence the weight on
the 𝐶𝐼𝑒𝑒) as the events percentage increase. This caused the total C-
index to stay constant for deep learning models but slightly decreased
for classical models.

In the third experiment, when changing the dataset’s size and the
censoring level (the column to the right in Fig. 4), the impact became
more pronounced. All the methods essentially achieved high C-indices
at a high censoring level (low % of events) and smaller dataset, result-
ing in very similar performances with respect to 𝐶𝐼 , 𝐶𝐼𝑒𝑒, and 𝐶𝐼𝑒𝑐 .

owever, at such a high censoring level, the 𝛼 term of the C-index is
elatively small, which makes the C-index primarily influenced by the
𝐼𝑒𝑐 term with minimal contribution from the 𝐶𝐼𝑒𝑒 term. As the size

ncreases and censoring decreases, the 𝛼 value increases, giving more
eight to the 𝐶𝐼𝑒𝑒 term. In this case, as the classical models did not
xhibit improvements on the 𝐶𝐼𝑒𝑒, which remained almost the same as
ore events were added to the dataset, this caused the total C-index

o decrease with the increasing weight on this term. In contrast, the
eep learning models exhibited an increase in 𝐶𝐼𝑒𝑒, which kept the total
-index the same for all levels of censoring.

The main difference between the second and the third experiments
ies in their approach to handling censoring. In the second experi-
ent (Censoring Only), a fraction of the observed event examples are

ensored, while in the third experiment (Censoring and size) those
bserved event examples are entirely removed from the dataset. To
chieve the same censoring percentage in the two scenarios, more event
ases need to be removed in the third experiment compared to the
nes that need to be censored in the second experiment. This results in
hat, for example, a dataset with 20% events in the second experiment
as 1821 event cases compared to 726 event cases in a dataset with
similar event percentage in the third experiment. This explains the

arger drop in performance in the 𝐶𝐼𝑒𝑒 in the third experiment which
as less number of observed event cases.

. Conclusion

In this work, we derived a decomposition of the C-index, separat-
ng it into two terms: one for ranking observed events, and another
or ranking observed events versus censored cases. These terms are
eighted by the parameter 𝛼. The 𝛼 factor expresses the contribution
f the two parts for the total C-index and can be interpreted as a
onditional probability for event–event pairs given that it is correctly
rdered 𝑃 ((𝑒𝑒) pair|ordered pair). A model that perfectly orders the
wo types of pairs will have an optimal 𝛼 factor (𝛼∗). Unbalanced
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Fig. 4. The change of 𝐶𝐼 , 𝐶𝐼𝑒𝑒, 𝐶𝐼𝑒𝑐 , and 𝛼 in Eq. (4) as the ratio of events changes. The 𝑥-axis shows different percentages of events (for the SUPPORT dataset).
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odels, i.e., models that are not equally good at ranking event–event
airs and event-censored pairs will deviate from this value. Based on
his deviation from the 𝛼∗, the 𝛼-Deviation measure can assess how
alanced a model is with respect to the ranking of the two groups of
airs.

SurVED is also proposed, a new approach for estimating the time-to-
vent distribution using a variational encoder–decoder with a Gaussian
atent layer. In benchmark tests, SurVED performs significantly better
han the two closely related methods, DATE and VSI, and achieves a
omparable overall performance to DeepSurv and DeepHit.

Using the C-index decomposition, it was shown that in cases where
odels perform differently in terms of the 𝐶𝐼𝑒𝑒 and 𝐶𝐼𝑒𝑐 , such dif-

erences often go unnoticed when evaluating the total C-index due to
8

he averaging. Furthermore, it was demonstrated, using the SUPPORT m
ataset with varying censoring levels and dataset size, that all methods
enefitted from increasing the dataset size. It was also shown that all
ethods have comparable performance in terms of the total C-index at
high censoring percentage and smaller dataset size, but all methods

o better at ranking event-censored pairs compared to ranking event–
vent pairs. However, as the number of events grows, SurVED and the
ther deep learning models VSI, DeepSurv, and DeepHit are better than
he other algorithms at improving their performance in ranking event–
vent pairs. This helped deep learning models maintain a constant
-index performance across different censoring levels in contrast to
he classical models which suffered from a drop in the C-index. This
xplains the large magnitude of the difference between deep learning
odels and the classical models on the SUPPORT dataset.
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This work focuses on analyzing the ranking performance of sur-
vival models using the C-index decomposition trying to get a better
understanding of the strengths and weaknesses of models with re-
spect to the different types of events and censored observations. Such
understanding drawn from decomposition can help to design better
objective functions of survival models which we leave for future work.
Moreover, studying the relation between the decomposition terms and
other evaluation metrics can potentially give more insights that help
develop better survival models which we also leave for future work.
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