Minskad belastning på dricksvattenresursen genom industriell-urban vattensymbios

Shane Carnohan, Elin Wallin, Andrew Simons, Andreas Nicolaidis Lindqvist och Lars Hamberg

RISE Rapport: 2023:111
Havs och Vatten myndigheten
Minskad belastning på dricksvattenresursen genom industriell-urban vattensymbios

Shane Carnohan, Elin Wallin, Andrew Simons, Andreas Nicolaidis Lindqvist och Lars Hamberg
Innehåll

Innehåll ... 3
Förord ... 5
Sammanfattning .. 6
1 Bakgrund & teori ... 8
 1.1 Vattenbrist globalt och nationellt ... 8
 1.2 Hur kan industriell och urban symbios bidra till vatten-försörjningen? 9
 1.3 Fallstudier .. 11
 1.3.1 Visby ... 11
 1.3.2 Vimmerby .. 12
 1.4 Projekets syfte och mål .. 14
2 Metodik .. 14
 2.1 Workshops: Samsyn genom samverkan ... 15
 2.1.1 Divergerande och konvergerande aktiviteter 15
 2.2 Nuläge, möjligheter och implementering ... 18
 2.2.1 Bedömning av nuläget ... 18
 2.2.2 Framtida vattensituation och möjligheter 19
 2.2.3 Underlättta implementering ... 20
3 Resultat .. 20
 3.1 Nuläge .. 20
 3.1.1 Visby ... 20
 3.1.2 Vimmerby .. 24
 3.2 Framtid och möjligheter .. 27
 3.2.1 Resultat TEA ... 27
 3.2.2 Perspektiv på olika besparingsåtgärder 37
 3.3 Hur kan implementering av vattensymbios underlättas? 41
 3.3.1 Vattenklasser ... 42
 3.3.2 Hållbarheten .. 43
 3.3.3 Lagar och regler .. 45
4 Diskussion ... 48
5 Slutsatser ... 50
6 Nästa steg ... 51
7 Referenser ... 52
8 Bilagor ... 55
 8.1 Så jobbar vi tillsammans mot vattensymbios lokalt 55
 Industriell Symbios - Behovet av det mänskliga initiativet 55
 8.2 Antaganden för den teknokonomiska bedömningen 60

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
8.3 Frågeformulär ... 63
8.3.1 Visby .. 63
8.3.2 Vimmerby .. 67
Förord

Projektet har pågått under perioden 2022-06-01 till 2023-10-31 och bestått av två tvillingprojekt i Vimmerby respektive Visby med syfte att utreda möjligheter till industriell och urban vattensymbios lokalt.

RISE Research Institutes of Sweden har varit facilitator och forskningsutförare och följande parter har bidragit till båda projekten; Sveriges geologiska undersökning, Linnéuniversitet, Industriellt Utvecklingscentrum Kalmar och Adven.
Sammanfattning

Vattenbrist är en akut global, och i många områden växande, utmaning. Pågående klimatförändringar och växande behov i stora delar av världen förändrar både tillgången och efterfrågan på rent vatten. Europa står inför flera akuta vattenrelaterade utmaningar med betydande säkerhets- och miljömässiga konsekvenser. Perioder av återkommande vattenbrist är en av de främsta utmaningarna som redan har drabbat flertalet europeiska länder, särskilt utsatt är området kring medelhavet. Men, även i Sverige är vattenbrist en utmaning som äventyrar försörjning av både dricksvatten och vatten till industri och jordbruk i flera regioner i de södra och sydöstra delarna av landet.

I både Vimmerby och Visby, Kalmar och Gotlands län, ses vattenbrist i dag som den främsta utmaningen för att säkra dricksvattenförsörjningen. Risken för vattenbrist förväntas öka i framtiden för båda dessa städer då pågående klimatförändringar bidrar till ökade säsongsvariationer i både nederbörd och temperatur. Utöver vattenbrist brottas båda städerna dessutom med att upprätthålla en god vattenkvalitet. Avrinning från jordbruket (bekämpningsmedel, gödselmedel, etc.) och föroringar från urbana hårdgjorda ytor som letar sig ned i grund- och ytvattenkällor utgör en ständig risk för vattenkvaliteten i den samhällsviktiga dricksvattenförsörjningen.

För att adressera dessa utmaningar och säkra tillgången till dricksvatten i tillräcklig mängd och av god kvalitet även i framtiden behövs ett övergripande tillvägagångssätt, som omfattar hållbara metoder för hantering av grundvatten, förbättrad övervakning av vattenkvalitet och utveckling av robusta strategier som möjliggör anpassning till att klara av ett föränderligt klimat. I detta projekt har konceptet industriell-urban vattensymbios utforskats som en möjlig lösning för att bidra till säkrad vantentillgång och minskad belastning på lokala dricksvattenresurser, med städerna Visby och Vimmerby som fallstudieobjekt.

Vattensymbios är ett systematiskt samarbete där olika aktörer i samhället (industri, kommunala verksamheter, jordbruk, m.fl.) agerar tillsammans för att optimera vattenanvändningen och minska avfallet genom lösningar som faciliterar utbyte och återanvändning av vatten, biprodukter och resurser på ett ömsesidigt fördelaktigt sätt. Till exempel kan renat industriavloppsvatten återanvändas för jordbruksbevattning eller som kylvatten i närliggande industrier, vilket minskar efterfrågan på dricksvatten. Detta tillvägagångssätt främjar ett effektivt resursutnyttjande som minimerar vattensönder och minskar systemets totala miljöpåverkan.

Projektets övergripande syfte har varit att utreda hur en industriell-urban vattensymbios skulle kunna utformas i Visby och Vimmerby för att minska belastningen på lokala vattenresurser genom nyttjandet av mjölkcondensat från Arla Foods AB’s som en möjlig vattenkälla. Utöver detta har projektet syftat till att utveckla och tillämpa en arbetsprocess för uppbyggnaden av lokal vattensymbiosinitiativ genom strukturerade intressentinvolverande metoder.

I ett samarbete mellan lokala VA-bolag, kommunala och privata verksamheter och vattenanvändare, och forskare från RISE har en nulägesbedömning av vattentillgång, vattenbehov, vattenbalansmodellering och en kartläggning av vattenflöden tillgängliga för en framtida symbios genomförts. Tekniska möjligheter att effektivisera vattenanvändningen genom recirkulering och utbyte av vattenströmmar av varierande...
kvalitet har undersökt och utvärderats genom en kombination av teknokonomisk analys och kvalitativ utvärdering tillsammans med medverkande vattenproducenter och verksamheter. Även hinder för implementering av vattensymbioser har undersökt (juridiska, tekniska och affärsmässiga) och förslag på åtgärder för att överbrygga dessa har tagits fram.

Utöver prissättningsschemans roll som möjliggörare eller hinder för vattensymbios så identifierades utveckling av ett system för klassificering av vattenflöden enligt olika kvalitetsklasser, ökad kunskap om olika vattenklassers hållbarhet, och utveckling av lagar & regler för recirkulering och användning av vatten som viktiga områden för att facilitera effektivare vattenanvändning genom symbios.

Detta projekt är ett av de första i Sverige med uttalat fokus på industriell-urban vattensymbios. Lärdmoran från projektet kommer vara värdefulla för att vidare utreda möjligheten för symbioslösningar i Visby och Vimmerby, men även i andra kommuner runt om i Sverige. Flera frågeställningar kvarstår att undersöka. Till exempel har detta projekt inte studerat hur variationer i vattentillgång och vattenbehov över säsongen, eller dygnet, påverkar de studerade symbioslösningarna. Dessutom behövs mer detaljerade analyser av de hydrologiska förutsättningarna i respektive fall för att säga något om hur de studerade lösningarna kan påverka den lokala vattenbalansen under olika framtidsscenarier. Vidare bör den teknokonomiska bedömningen som genomförts förstärkas genom att inkludera mer exakta kostnadsuppgifter (till exempel leverantörspriser på utrustning), inverkan av marknadsfluktuationer, och andra osäkerheter.
1 Bakgrund & teori

1.1 Vattenbrist globalt och nationellt

Vattenbrist är en akut global utmaning i många delar av världen som förvärras av klimatförändringar och befolkningstillväxt. I dagsläget saknar cirka 2,2 miljarder människor tillgång till rent dricksvatten och över 4,2 miljarder saknar tillgång till säkert hanterade sanitetstjänster, vilket medför hälsorisker och miljöförstöring (UNESCO, 2021). Prognoser visar på att klimatförändringarna kommer att förvärra problemet, med minskad vattentillgång och ökad torka som konsekvens (Kristensen et al., 2018).

På Gotland indikerar till exempel SMHI:s klimatmodeller att ön kan uppleva minskade totala nederbördsnivåer och ökad variation i nederbörd framöver (SMHI, 2021). Detta

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
kan leda till risk för vattenbrist under torrare perioder, särskilt under sommarmånaderna då efterfrågan på vatten dessutom är som störst.

Utöver vattenbrist brottas dessutom de båda städerna med att upprätthålla en god vattenkvalitet. Den omfattande användningen av jordbrukschemikalier, såsom bekämpningsmedel och gödningsmedel, i och omkring städerna kan leda till att grundvattnet förorenas. Dessutom kan avrinning från urbana områden bidra till att andra typer av förorening av vattenkällorna. Risken är att dessa föroreningar äventyrar vattenkvalitén vilket är oroande eftersom det får negativ inverkan på säkerheten i dricksvattenförsörjningen (SGU, 2012).

För att adressera dessa mångfacetterade utmaningar behövs ett övergripande tillvägagångssätt, som omfattar hållbara metoder för hantering av grundvatten, förbättrad övervakning av vattenkvalitet och utveckling av robusta strategier som möjliggör anpassning till att klara av klimatförändringarna föränderliga inverkan (SGU, 2021).

1.2 Hur kan industriell och urban symbios bidra till vatten-försörjningen?

Traditionellt sett har vattenanvändning i första hand förknippats med dricksvattenproduktion och leverans till användare samt avloppshantering av avfallet som genererats hos användaren. Denna traditionella modell bygger på att vatten tas från naturliga vattendrag eller från grundvattentäkter, varpå det behandlas vid vattenreningsverk för att sedan distribueras till hushåll, industrier och företag. Efter användning blir vattnet avloppsvatten som samlas upp, behandlas och släpps ut i miljön eller vattendragen igen. Denna linjära modell för vattenförsörjning och rening av avloppsvatten har varit standard i många år och har ofta lett till betydande slöseri av vatten samt miljöutmaningar (Mukheibir and Ziervogel, 2007). För att säkra framtida dricksvattenförsörjning krävs innovativa metoder och koncept för vattenförvaltning som omformar hur vi tänker kring vattenanvändning och hantering. Industriell och Urban Symbios (IUS) är en framväxande strategi för att minska samhällets resursförbrukning och främja återanvändning, vilket kan bidra avsevärt till långsiktigt försörjningssäkerhet och minskad miljöbelastning (Martin and Harris, 2018). I ansatsen att applicera IUS som koncept för att bygga en hållbar och robust vattenförsörjning har begreppen vattensymbios och alternativa vattenkvaliteter tagit form:

Dessa innovativa tillvägagångssätt utmanar den traditionella synen på vattenanvändning som en linjär process från dricksvatten till avloppsvatten. De uppmuntrar ett mer cirkulärt och hållbart förhållningssätt, där vatten behandlas som en värdefull resurs som kan användas, behandlas och återanvänds i ett slutet system. I industrer med symbiotiska relationer identifieras ofta möjligheter att behandla och recirkulera avloppsvatten mellan industriella processer vilket bland annat medför minskad belastningen på sötvattenkällor. Dessutom kan renat industriellt avloppsvatten användas för att producera dricksvatten och vatten med annan kvalitet till urbana områden, vilket ytterligare sparar på sötvattenresurserna. Utöver minskad belastning på sötvattenresurserna kan också miljöpåverkan från utsläpp av avloppsvatten i naturliga ekosystem minimeras. Utöver fysiska utbyten av resurser är behovet av samverkan över organisationsgränser ett viktigt karaktärsdrag för en fungerande symbios. Detta uppmuntrar till utbyte av kunskap kring goda exempel och teknik, vilket kan medföra att vatteneffektiviseringsåtgärder implementeras i enskilda industriella processer som kanske inte skulle ha skett utan samarbetet.

Vattensymbios bidrar ofta inte enbart till lokal utveckling. Samarbetsinsatser mellan industrier och akademiska institutioner resulterar ofta i utvecklingen av avancerad teknik som kan nyttjas för behandling, uppradning och återvinning av vatten. Dessa innovationer gynnar inte bara de berörda industrierna utan även samhället i stort genom att tillhandahålla lösningar på vattenrelaterade utmaningar. Nordsjöhamnen i Europa har till exempel utvecklats till ett nav för utveckling av innovativa metoder för vattenförvaltning inom ramen för IUS. Industrier inom hamnen har varit pionjärer för utveckling av metoder för bearbetning av vatten och reningsteknik, vilket har bidragit till förbättrade vattenkvalitet och minskad vattenförbrukning (Korhonen et al., 2018).

1.3 Fallstudier

I projektet har Visby och Vimmerby utgjort områdena för fallstudien. Som kortfattat beskrivits i kapitel 1.1 utgör vattenbrist redan i dagstiden en stor utmaning för att säkra dricksvattenförsörjning och det finns osäkerheter i de båda städerna hur dricksvattentillgången ska säkras på sikt.

År 2021 genomfördes förstudien "Hållbar Livsmedelsindustri med fokus på vatten" av Vimmerbys kommun i vilken återanvändning av kondensatsvatten från Arlas mjölkpulververkning identifierades som en viktig lösning att undersöka vidare för att minska belastningen på Vimmerbys dricksvattenresurs. Utöver anläggningen i Vimmerby har Arla Foods dessutom mjölkpulverproduktion i Visby. Kondensatvattnet som i dagsläget släpps till dagvatten i Visby och våtmarken i Vimmerby har ansetts vara av hög kvalitet och kan därför potentiellt nyttjas som vattenkälla i närheten av Arla med flertalet samhälls- och industriaktörer som möjliga vattenmottagare.

En skillnad mellan Visby och Vimmerby är att i Visby nyttjar de stora vattenförbrukarna i dagsläget kommunalt dricksvatten för att täcka sina vattenbehov medan i Vimmerby nyttjar industrierna andra vattenkällor i större utsträckning. Tex har Åbro tillgång till grundvatten och Svensk Tryckgjutning Sven Hjelte AB (STG) nyttjar vatten från närliggande damm till kyla.

Specifik information om Visby respektive Vimmerby följer nedan.

1.3.1 Visby

I Visby produceras i dagsläget ca 2 729 000 m³ dricksvatten/år och under sommaren ökar behovet av dricksvatten markant vilket sammanfaller med att tillgången är som lägst. Till följd av bland annat ökat antal förbrukare till följd av turism och bevattning
av jordbruk kan dricksvattenförbrukningen på Gotland under sommaren nästan fördubblas (Region Gotland, 2023).

Prognoser visar på att problemet med att säkra dricksvattenförsörjningen kan bli ännu värre på sikt då det totala vattenbehovet under året skulle kunna öka med 30 % på Gotland fram till 2045 till följd av ökad bebyggelse i bland annat Visby, ökade ledningsförluster och ökat behov av kommunalt vatten till industri och jordbruk.

Ruta 1. Information om Visby.

<table>
<thead>
<tr>
<th>Generella fakta om Visby:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folkmängd i Visby: cirka 23 800 invånare (Region Gotland, 2023).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industriaktörer i projektet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arla Foods Visby: Stor dricksvattenförbrukare i Visby som tillverkar mjölkpulver från mjölk och får i produktionen 88 000 m³/år mjölkkondensatvatten, vilket i projektet utgör exempel på vattenproducent.</td>
</tr>
<tr>
<td>Protos: Stor dricksvattenförbrukare i Visby som har tillämpningsområden som nyttjar dricksvatten men som potentiellt skulle kunna nyttja vatten av lägre kvalitet. Utgör i projektet exempel på vattenmottagare.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Övriga aktörer i projektet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region Gotland: Behovsägare i projektet med ansvar att säkra Visbys såväl som Gotlands vattenförsörjning. Flera av regionens verksamheter utgör i projektet även möjliga vattenmottagare.</td>
</tr>
<tr>
<td>Gotlandshem: Kommunalt bostadsbolag som ägs av Region Gotland. Utgör i projektet exempel på vattenmottagare.</td>
</tr>
</tbody>
</table>

1.3.2 Vimmerby

I Vimmerby finns det i dagsläget viss osäkerhet gällande tillgången på vatten i grundvattenmagasinen och det finns risk för brist på dricksvatten under sommarhalvåret då också många turister besöker Vimmerby och Astrid Lindgrens värld. Åtgärder för att minska dricksvattenförbrukning har genomförts och pågår men tillgången på dricksvatten är fortfarande osäker. Detta leder till en oviss framtid för kommunen och det ser ett behov av att dessutom göra det möjligt för befintliga industrier och turism att expandera samt underlätta nyetablering.

I Vimmerby är avloppsverket uppdelt av två delar, en kommunal del och en industriell reningsdel. Denna uppdelning medför att kostnaden för avloppshantering för
industrier i Vimmerby består av två delar en konstant kostnad, se Tabell 12, och en drift- och underhållskostnad för förbehandlingsanläggningen vid reningsverket. Denna kostnad är inte direktt proportionell mot avloppsmängden utan baseras på VEMAB:s faktiska kostnader, vilket medför att den påverkas både av mängd och kvalitet på avloppsvattnet, till exempel ökar kostnaden när det åtgärds mer syra för att hantera avloppsvattnet med för högt pH.

Ruta 2. Information om Vimmerby.

Generella fakta om Vimmerby:

Folkmängd i Vimmerby kommun: 15 578 år 2021 (Vimmerby kommun, 2022).

Turism: år 2022 registrerades 273 743 gästnätter i Vimmerby kommun (Chasanidou, 2015).

Vattenkälla: I Vimmerby nyttjas råvatten från grundvattenmagasin och konstgjord infiltrering från ytvattentäkt för att fylla på grundvattenmagasinen.

Industriaktörer i projektet:

Arla Foods Vimmerby: Kommunens största dricksvattenförbrukare som nyttjar ca en tredjedel av kommunens totala dricksvattenproduktion. Tillverkar mjölpulver från mjölk och får i produktionen ett stort överskott av förhållandevis rent kondensatvatten. Delar av kondensatet återanvänds inom mejeriet men ca 380 000 m3/år är överblivet och skulle kunna nyttjas av annan aktör, genomför en större energieffektiviseringsåtgärd som påverkar tillgången på kondensat. Utgör i projektet exempel på vattenproducens.

Övriga aktörer i projektet:

Vimmerby Kommun: Behovsägare i projektet tillsammans med VEMAB och Region Kalmar med önskemål att säkra kommunens dricksvattentillgång för att kunna behålla och expandera kommunens näringsliv och turism.

Region Kalmar län: Behovsägare i projektet som bidrar med det regionala perspektivet och hur utvecklad arbetsprocess för etablering av industriell-urban vattensymbios kan nyttjas av andra kommuner i länet.

1.4 Projektets syfte och mål

Det övergripande syftet med projektet var att bidra till att minska trycket på lokala dricksvattentäkter med utgångspunkt industriell-urban symbios. Detta skulle genomföras som ett tvillingprojekt där Arla producerar kondensat i både Vimmerby och Visby med relativt bra kvalitet och som därför bedöms ha stor potential för återanvändning i andra industriella processer. Genom att genomföra projektet parallellt i båda områdena förväntades utveckling av övergripande lärdomar som kan vara till nytta för andra kommuner i Sverige. Dessa inkluderar att tolka hur man "börjar från början" med sådan vattensymbios och undersöka hur olika metoder kan användas för att stödja lokala aktörer.

Specifika mål med detta projekt har varit:

1. Att utreda utformning av industriell-urban vattensymbios i Vimmerby respektive Visby med utgångspunkt i mjölk kondensatvatten från Arla som vattenkälla och flertalet tänkbara samhälls- och industriaktörer som vattenmottagare.
2. Att utveckla och tillämpa en arbetsprocess för intressentinvolverad uppbyggnad av lokal industriell-urban vattensymbios och därigenom underlätta implementering av denna vattenbesparande åtgärd i andra kommuner.

Genomförandet av projektet har varit uppbyggt kring tre parallella delmål som samtliga bidrar till projektets övergripande syften:

- Bedöma nuläget i form av en kartläggning av nuvarande vattentillgång och behov i de båda fallstudieområdena för att identifiera flöden och processer som skulle kunna ingå i en framtid vattensymbios.
- Utvärdera hur den framtid tillgången och efterfrågan på vatten kan komma att se ut, vilka tekniska möjligheter som finns att effektivisera vattenanvändningen genom olika vattensymbios-lösningar i de båda fallstudieområdena, och utvärdera den ekonomiska lönsamheten i dessa lösningar.
- Belyska vilka hinder (juridiska, tekniska, affärsstämmiga, etc.) som idag finns för implementering av vattensymbolstruktur och påvisa hur dessa kan påverka implementering.

Dessutom ingår det i projektet att inkludera aspekter som delvis ligger utanför den lokala kontexten genom att utforska rollen av IUS långsiktigt som en möjlig klimatanpassningsstrategi.

2 Metodik

Genom projektets gång har RISE agerat som övergripande facilitator för att bidra till diskussion och samsyn mellan vattenproducenter och användare i de två fallstudierna (Visby och Vimmerby). Som facilitator har RISE roll inte varit att komma med direkta förslag om vad respektive aktör ska/bör göra, utan snarare att genom ett strukturerat och facilerat arbetsätt bidra till att gruppen skapar sig en gemensam bild av uppgiftens utmaningar och möjligheter. Arbetsättet är inspirerat av etablerade metoder från deltagande processer som är kända för att kunna bidra till holistiska och
implementerbara strategier för att hantera gemensamma vattenresursutmaningar med flera intressenter (Paulus, Baruah, & Kenworthy, Enhancing Collaborative Ideation in Organizations, 2018). Projektets övergripande tidslinje, med divergerande och konvergerande faser och utvalda nyckelaktiviteter indikerade, är presenterade i Figur 1. Metod och angreppssätt för projektets nyckelaktiviteter, inklusive workshops, nulägesanalys, utforskande framtids- och möjlighetsanalys, samt utvärdering av hinder och möjligheter för vattensymbios är presenterade i kapitel 2.1 och 2.2.

Figur 1. illustrerar projektets upplägg som en diamant bestående av två faser. I den första fasen av projektet identifierades olika möjligheter (orange i figuren) och i den andra fasen utvärderades dessa möjligheter.

2.1 Workshops: Samsyn genom samverkan

En serie workshops genomfördes tillsammans med industri- och kommunrepresentanter från Visby respektive Vimmerby. Syftet med workshoparna var att skapa samsyn kring gemensamma utmaningar och möjligheter för vattensymbios lösningar i de respektive städerna, prioritera bland olika lösningar och generera underlag till vidare analyser presenterade i kapitel 2.2.

2.1.1 Divergerande och konvergerande aktiviteter

I enlighet med bästa praxis inom gruppsbeslutsteori och designtänkande strukturerades projektet så att det hade väldefinierade divergenta och konvergenta faser. Divergenta faser ger utrymme för idégenerering och kreativitet (se Ruta 1). Denna fas lägger grunden för innovativa lösningar, uppmuntrar till deltagande och säkerställer att gruppen utforskar ett brett spektrum av idéer innan man går över till den konvergerande fasen. I den konvergenta fasen utvärderas, förfinas och sorteras de identifierade idéerna för att hitta de mest lovande lösningarna.

Ruta 2. Fördelar med att införliva divergerande aktiviteter i workshop-processen (Kahner, 2014; Chasanidou, 2015; Paulus, Coursey, & Kenworthy, Divergent and Convergent Collaborative Creativity, 2019).
I divergenta aktiviteter uppmuntras deltagarna att generera ett brett spektrum av idéer, lösningar och perspektiv utan att omedelbart utvärdera eller kritisera dem. Fördelarna med att engagera sig i divergent arbete är:

Idégenerering: Divergens gör det möjligt att utforska många olika idéer och möjligheter. Det uppmuntrar deltagarna att tänka fritt och kreativt, vilket främjar innovation och identifiera potentiellt banbrytande lösningar.

Inkludering: Denna fas säkerställer att alla röster i gruppen hörs, vilket främjar inkludering och jämlikt deltagande. Människor med olika bakgrund och perspektiv har möjlighet att bidra, vilket idépooleden.

Stimulerar kreativitet: Kreativt tänkande är ofta olinjärt och kräver frihet att utforska okonventionella idéer. Den divergenta fasen skapar en miljö där deltagarna känner sig trygga med att tänja på gränserna och utforska oortodoxa lösningar.

Förbättrar problemförståelsen: Ett brett spektrum av idéer som genereras under denna fas kan leda till djupare insikter och en mer omfattande förståelse för det aktuella problemet eller utmaningen.

Energi och engagemang: Det är mer sannolikt att deltagarna känner sig engagerade och energiska när de aktivt bidrar med sina tankar och idéer. Detta kan öka motivationen och samarbetet inom gruppen.

Främjar samarbete: Det öppna utbytet av idéer under den divergenta fasen kan skapa möjligheter för samarbete och synergi mellan gruppmedlemmarna. De kan bygga vidare på varandras idéer för att skapa mer robusta lösningar.

Workshopen resulterade i ett brett urval av åtgärder, möjligheter och idéer för vattensymbiosis i respektive fallstudieområde, organiserade utifrån olika perspektiv (Figur 2).
Figur 2. Resultatet från nominalgruppsteknik organiserat utifrån perspektiven teknik och integration, lagar, organisation, affärförfrågningar och projekt.

Viktiga lärdomar från den divergerande fasen:

- Diskussionen i den divergerande fasen kretsade i huvudsak kring tekniska åtgärder för att återanvända vatten, genom symbios mellan olika företag och genom interna effektivitetsförbättringar.
- Aspekter kopplat till vattenkvalitet var i fokus dels vid bedömning av olika tekniska åtgärder (att uppnå olika kvaliteter med olika rengöringsprocesser) och dels vilka kvaliteter som får användas för olika ändamål.
- Den divergerande fasen bidrog till samsyn inom projektgruppen att implementering av vattensymbios kräver kontinuerligt samarbete och ett tydligt ledarskap, vilket innebär att det finns behov av fortsatt samarbete efter projektets slut.
- Förståelse för att framtida trender, inklusive klimatförändringar, befolkningstillväxt och hushållens beteenden, också kommer att påverka hur effektiv vattensymbios är för att säkra den framtida dricksvattenförsörjningen.
- Identifiering av målet med vattensymbiosen, att den ska bidra till framtida vattenförsörjning genom att minska belastning på grundvattenuttag.

Baserat på diskussionerna från de två inledande workshoparna gjordes ett första urval av åtgärder att analysera och utvärdera. För att fånga flera av de perspektiv som identifierats som viktiga, det vill säga den ekonomiska potentialen hos olika alternativ och osäkerhetsfaktorer kopplat till framtidens vattenförsörjningssystem, fortskred arbetet i två grupperingar. Den första gruppen fokuserade på att karakterisera det nuvarande vattenförsörjningen och jämföra detta med de olika alternativen ur ett ekonomiskt perspektiv. Fokus i grupp två var av mer övergripande karaktär och fokuserade på att undersöka de framtida osäkerheterna kring vattenförsörjningen. Utöver detta har projektet dessutom lagt särskild vikt vid gällande lagar och regler för industrins vattenanvändning i industrin och vilka förändringar som kan behövas i framtiden. Detta studeras djupare i projekt ”Branschritlinjer för ökad återanvändning av vatten i mejeriindustrin” som koordineras av RISE.
2.2 Nuläge, möjligheter och implementering

Fortsatt arbete i projektet genomfördes i tre parallella spår som var och en bidrar en ökad förståelse för hur en vattensymbios i Visby/Vimmerby skulle kunna bidra till minskad belastning på lokala dricksvattenresurser genom att:

- identifiera och utvärdera alternativ för hur en vattensymbios kan utformas
- belysa för- och nackdelar med olika alternativ, samt
- identifiera hinder och möjligheter för implementering utifrån ett lokalt och juridiskt perspektiv

Utgångspunkten i arbetet har varit att effektiv och hållbar förvaltning av gemensamma vattenresurser kräver kunskap om nuläge (hur ser vattentillgången och vattenbehovet ut idag), troligt och önskat framtida läge (hur bedöms vattentillgång och behov förändras i framtiden, samt hur vill vi att framtiden skall se ut), och samsyn kring hur förflyttningen från nuläge till önskat läge bör ske, förankrad i en gemensam systemförståelse som sträcker sig över organisationsgränser.

I sektion 2.2.1 – 2.2.3 presenteras de tre arbetsspåren som bedrivits parallellt under projektets genomförande.

2.2.1 Bedömning av nuläget

Syftet med detta arbetsspår har varit att skapa en gemensam nulägesbild av vattenbehov i de två fallstudieområdena. Detta har inkluderat kartläggning av vattenanvändare, flöden (idag och planerade förändringar) och kvalitet i de verksamheter som deltagit i projektet i Visby och Vimmerby. I kartläggningen av vattenanvändare har dessutom flöden för verksamheter som inte är med i projektet inkluderats för att identifiera vattenflöden med möjlighet att utnyttjas i en lokal symbios.

2.2.2 Framtida vattensituation och möjligheter

Utifrån kartläggningen av vattenanvändare, producenter och flöden genomförd i 2.2.1 identifierades och prioriterades möjliga symbiosscenarier (fall) tillsammans med projektdueltagarna. Fem fall med fokus på att återanvända vatten och ett referensfall baserat på nulägesbedömningen i 2.2.1 identifierades som mest intressanta för respektive område. Detta skedde i övergången från den divergerande till den konvergerande fasen i Figur 1. En teknokonomisk analys genomfördes för att utvärdera de olika fallen utifrån deras kostnadsbesparingspotential, resursutnyttjande och dricksvattenbesparing (Tabell 1).

Tabell 1. Samanställning av parametrar för att bedöma effekten av olika åtgärder.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beskrivning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentiell kostnadsbesparing</td>
<td>Diskonterade kassaflödena med fall 1 som baslinje</td>
</tr>
<tr>
<td>Resursutnyttjande</td>
<td>m³ kommunalt dricksvatten/m² invägd mjölk</td>
</tr>
<tr>
<td>Dricksvattenbesparing</td>
<td>Dricksvattenbesparing avser skillnaden i total drickvattenförbrukning mellan befintligt system och efter implementering av åtgärd. En besparing innebär därmed även minskad belastningen på vattentäkterna. Besparing är uttryckt i antal hushåll, med en förbrukning på ca 150 - 200 m³/familj och år, som potentiellt skulle kunna försörjas.</td>
</tr>
</tbody>
</table>

Den ekonomiska bedömningen syftar till att fånga inverkan av pengars tidsvärde (Eng. time value of money) för de olika fallen. Metoden som ligger till grund för beräkningarna kallas för nuvärdesmetoden och är en vanlig metod för att uppskatta en investerings lönsamhet. Vidare är det viktigt att notera att analysen endast inkluderar vissa delar inom bedömningens systemgränser. Detta innebär att enbart resurser och investeringar som påverkas av symbiosen är inkluderade i analysen, i dagsläget

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

Den teknoekonomiska bedömningen av de olika symbiosmöjligheterna bidrar med två konkreta nyttor till projektet. Den första nyttan är att skapa ett underlag som underlättar jämförelse och prioritering av identifierade symbiosmöjligheter. Den andra nyttan är att den sätter besparingspotentialen i förhållande till investeringen, vilket gör att symbiosmöjligheter kan sättas i relation till andra åtgärder för att lösa lokal dricksvattenbrist.

En översikt av antaganden som gjorts för den ekonomiska bedömningen finns i bilaga 7.2.

2.2.3 Underlätta implementering

Under projektets gång har frågor kopplade till vattenklasser, vattnets hållbarhet vid lagring (och dess mikrobiologiska risker), och befintlig lagstiftning varit av stort intresse, vilket har framkommit både genom nominalgrupptekniksaktiviteter, och från frågeformulär. Önskan och krav att minska vattenanvändning och generering av avloppsvatten inom livsmedelsindustrin för att främja omställningen till en klimatneutral och cirkulär industri har identifierats som frågeställningar att utreda vidare. Värdefulla insikter och ett samlat kunskapsläge har kunnat tillgodogöras via projektet ”Branschritlinjer för ökad återanvändning av vatten i mejeriindustrin”.

3 Resultat

3.1 Nuläge

3.1.1 Visby

Kartläggningen av industri- och/eller samhällsaktörer som potentiellt skulle kunna nytta kondensatvattnet från Arla som vattenkälla resulterade i att ungefär 15 aktörer i Visby. Dessa identifierades som möjliga mottagare av vatten med annan kvalitet än
drickskvalitet. Dessutom identifierades en av Protos restvattenströmmar som en möjlig vattenkälla utöver Arla Foods kondensat. För att skapa en översikt över vart behovet och tillgången finns idag delades aktörerna in i olika områden, se Figur 3 och Tabell 2.

<table>
<thead>
<tr>
<th>Aktör</th>
<th>Område</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arla</td>
<td>Blå</td>
</tr>
<tr>
<td>Protos</td>
<td>Blå</td>
</tr>
<tr>
<td>BE-GE Lastbilar</td>
<td>Blå</td>
</tr>
<tr>
<td>Bergkvarabuss</td>
<td>Blå</td>
</tr>
<tr>
<td>Vattenkiosk</td>
<td>Blå</td>
</tr>
<tr>
<td>GotlandsHem</td>
<td>Grön</td>
</tr>
<tr>
<td>Ragnsells</td>
<td>Röd</td>
</tr>
<tr>
<td>Återvinningscentral</td>
<td>Röd</td>
</tr>
<tr>
<td>Brandstation</td>
<td>Turkos</td>
</tr>
<tr>
<td>Flygplats</td>
<td>Turkos</td>
</tr>
<tr>
<td>Gotska GK</td>
<td>Turkos</td>
</tr>
<tr>
<td>Visby ishall</td>
<td>Rosa</td>
</tr>
<tr>
<td>Rävhagens fotbollsplaner</td>
<td>Rosa</td>
</tr>
<tr>
<td>Visby bryggeri</td>
<td>Ljusgrön</td>
</tr>
<tr>
<td>Visbytravet</td>
<td>Orange</td>
</tr>
<tr>
<td>Linds växthus</td>
<td>Orange</td>
</tr>
</tbody>
</table>

Figur 3. Aktörskartläggning i Visby.

I Tabell 2 finns en sammanställning över kommunal dricksvattenproduktion och lokala dricksvattenförbrukare i Visby.
Tabell 2. Samanställning över kommunal dricksvattenproduktion och lokala drickvattenkonsumenter i Visby.

<table>
<thead>
<tr>
<th>Dricksvattenproducenter</th>
<th>Produktion [m³/år]</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunala vattenverk dricksvatten (Hela Gotland)</td>
<td>3 800 000</td>
<td>På Gotland är den totalt vattenanvändningen uppskattad till 20,8 miljoner m³/år, utav dessa är cirka 3,8 miljoner m³/år produceras inom det kommunala nätet (Eklund, 2018).</td>
</tr>
<tr>
<td>Dricksvatten (Visby)</td>
<td>2 729 000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dricksvattenkonsumenter</th>
<th>Förbrukning [m³/år]</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arla Foods</td>
<td>168 000</td>
<td>ca 88 000 m³ överblivet mjölkcondensatsvatten/år</td>
</tr>
<tr>
<td>Protos</td>
<td>67 000</td>
<td>Separat projekt där de samlar in regnvatten som kan nyttjas för bevattning och på sikt även i tvättstugor.</td>
</tr>
<tr>
<td>GotlandsHems (Hela Gotland)</td>
<td>192 000</td>
<td></td>
</tr>
<tr>
<td>BE-GE Lastbilar</td>
<td>3 000</td>
<td></td>
</tr>
<tr>
<td>Bergkvarabuss</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Ragnsells</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Återvinningscentral</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Brandstation</td>
<td>1 500</td>
<td></td>
</tr>
<tr>
<td>Flygplats</td>
<td>1 300</td>
<td></td>
</tr>
<tr>
<td>Gotska GK</td>
<td><200</td>
<td></td>
</tr>
<tr>
<td>Visby ishall</td>
<td>1 800</td>
<td></td>
</tr>
<tr>
<td>Rävhagens fotbollsplaner</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bryggeriet Artellrigatan 9</td>
<td>1 100</td>
<td></td>
</tr>
<tr>
<td>Visby bryggeri</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>Visby travet</td>
<td>3 800</td>
<td></td>
</tr>
<tr>
<td>Gata och park</td>
<td>62 400</td>
<td></td>
</tr>
<tr>
<td>Linds växthus</td>
<td>1 000</td>
<td></td>
</tr>
</tbody>
</table>

Möjligheter till dricksvattenbesparingar genom återanvändning av restvattenströmmar från Arla och Protos i omkringliggande verksamheter bedömdes. Associerade kostnader för transport av vatten genom både rörledningar och vägtransport med tankbil utreddes. För att underlätta bedömningsarbetet gjordes antagandet att vissa symbiosmöjligheter kunde skapa förutsättningar för att aktörer kunde dela på transportkostnader. För samtliga områden uppskattades potentialen för tillgängligt restvatten (mängd och kvalitet), behov av vatten med lägre renlighet än dricksvatten och transportkostnad från området till Arla Foods.

Resultatet från bedömningen tyder på att vattenbehovet i områdena utanför det blåmarkerade området i Figur 3 är för små för att det skall gå att ekonomiskt motivera transport av restvatten genom rördragning från Arla/Protos till dessa områden. En rimligare lösning torde vara att symbiosen höll sig inom det blå området men att aktörer från övriga områden kan hämta vatten själva vid behov.

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Ovan analys utgjorde grunden för den uppföljande teknökomolimiska analysen (kapitel 3.2) där referensscenariot (noll-alternativet) representerar Arlas nuvarande vattenförsörjning i Visby (Figur 4).

![Diagram](image)

3.1.1.1 Vattenballans för Visbys kommunala vattentäkter

I Figur 5 presenteras resultaten från grundvattenmodellering av tre av Visbys fyra grundvattentäkter (den fjärde täkten var ej färdigkalibrerad vid tidpunkten för denna rapport).

![Diagram](image)

Täkt 1. 2022

This work is licensed under CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/]
3.1.2 Vimmerby

Kartläggningen av potentiella mottagare av kondensatvatten från Arla i Vimmerby resulterade i 10 industri och/eller samhällsaktörer. Aktörerna delades in i geografiska områden med antagandet att vissa symbiosmöjligheter kunde skapa förutsättningar för att dela på transport, med rör alternativt tankbil (Figur 6). För samtliga områden uppskattades potentialen för tillgängligt restvatten (mängd och kvalitet), behov av vatten med lägre renlighet än dricksvatten, och transportkostnad från området till Arla Foods.

Figur 5 a-c. Simulerade och observerade grundvattennivåer i tre av Visbys kommunala grundvattentäkter under året 2022. GV = grundvattennivå.

Tabell 3 ger en sammanställning av den ungefärliga dricksvattenförbrukningen för respektive aktör i Vimmerby. Förbrukning för aktörer utanför projektet var svår att kvantifiera men kvalitativ information om dessa aktörers vattenanvändning finns med i tabellen.

Tabell 3. Samanställning över kommunal dricksvattenproduktion och lokala drickvattenförbrukare i Vimmerby.

<table>
<thead>
<tr>
<th>Dricksvattenproducenter</th>
<th>Produktion [m³/år]</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEMAB</td>
<td>1 250 000</td>
<td>VEMAB har ett eget system för tekniskt vatten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dricksvattenkonsumenter</th>
<th>Förbrukning [m³/år]</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arla Foods</td>
<td>Dricksvattenbehov: ca 430 000 m³/år Tillgänglig mängd kondensat: 416 000 m³/år</td>
<td>Arla Foods står för ca en tredjedel av den totala förbrukningen på det kommunala nätet. I dagsläget pågår ett intern projekt där bland annat kommer bygga ett separat rörsystem för ROP vatten.</td>
</tr>
<tr>
<td>Åbro</td>
<td>Dricksvattenbehov: ca 244 000 m³/år</td>
<td>Egen grundvattentäkt och potentiellt eget tekniskt vatten som delvis kan återcirkuleras internt.</td>
</tr>
<tr>
<td>Autolacks Industrilackering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STG</td>
<td>Tar vatten från damm</td>
<td></td>
</tr>
<tr>
<td>Vida sågverk</td>
<td></td>
<td>VIDA sågverk har i dagsläget ingen bevattning av sitt timmer. Kan eventuellt bli aktuellt att</td>
</tr>
<tr>
<td>Dricksvattenproducenter</td>
<td>Produktion [m³/år]</td>
<td>Kommentar</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Vidersborgsplantskola</td>
<td></td>
<td>Stångån ligger nära som vattenkälla</td>
</tr>
<tr>
<td>Vimarvallen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrid Lindgrens Värld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fordonstvätt Älåkragatan</td>
<td>5 000–10 000</td>
<td>Postnord: De köper in extern tvätt av 2 lastbilar/vecka</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GDL: Har en tvätthall, vet ej hur mycket den används</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nilsbuss: använder ca 2300 m³/år (men då cirkuleras endast 20% av vattnet). Problem med för långt tryck i kommunala nätet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anders Tankservice:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Finnvedens: har ingen tvätthall</td>
</tr>
<tr>
<td>Lantbruk</td>
<td></td>
<td>Saknas i dagsläget lantbrukare som odlar grödor som behöver bevattnas. Marken lämpar sig dåligt för odling så inte troligt att det kommer att odlas grödor på marken som behöver bevattnas.</td>
</tr>
</tbody>
</table>

I den bedömningen av tillgängligt restvatten lyftes främst Arlas mjölk kondensat och spillvatten från Åbro som intressanta vattenkällor. Mängd tillgängligt restvatten från dessa varierar idag över säsongen och förväntas dessutom förändras i framtiden till följd av planerade förändringar hos befintlig industri och potentiella nyetablerade industrier (gröna området i Figur 6).

Resultaten från nulägesbedömningen utgjorde grunden för den uppföljande teknoekonominiska analysen (kapitel 3.2) där referensscenariot (noll-alternativet) representerar Arlas nuvarande vattenförsörjning i Vimmerby (Figur 7).

Figur 7. Nuvarande vattenförsörjning, avlopp och dagvattenflöden runt Arla i Vimmerby. Referensfall för den teknoekonominiska analysen i 3.2.

*This work is licensed under CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/]
3.2 Framtid och möjligheter

3.2.1 Resultat TEA

3.2.1.1 Visby

I Tabell 4 finns de analyserade fallens systemgränser beskrivna och illustrerade. Fall 1 representerar noll-alternativet där inga åtgärder vidtas. Fall 2–6 representerar fem möjliga åtgärdsscenarier för att minska dricksvattenförbrukningen i det studerade området.
Tabell 4. Samanställning av de sex fall som analyserats i Visby.

Fall 1 - Ingen åtgärd genomförs

Fall 2 - Arla minimerar behovet av kommunalt dricksvatten, genom att renna kondensat med RO membran och polering med AC (antar att 80% kan återanvändas)

Fall 3 - Arla minimerar behovet av kommunalt dricksvatten, genom att renna kondensat med RO membran och polering med AC (antar att 100% kan återanvändas)

Fall 4 - Minimerar behovet av kommunalt dricksvatten på Lundbygatan, genom att kondensat för först renas i en reningsanläggning med RO membran och polering med AC och därefter renas i det kommunala vattenverket.

Fall 5 - Minimerar behovet av kommunalt dricksvatten på Lundbygatan, genom att renna kondensat med RO membran och polering med AC (antar att 90% kan återanvändas).

Fall 6 - Minimerar behovet av kommunalt dricksvatten på Lundbygatan, genom att renna kondensat med RO membran och polering med AC (antar att 100% kan återanvändas).
I både Visby och Vimmerby finns separata priser för dricksvattenförsörjning och avloppsvattenrenning. På Arla i Visby mäter de endast flödet på inkommande dricksvatten och inte på avloppsvattnet. Detta medför att dricksvattenkostnaderna i bedömning består av både kostnaden för dricksvattenförsörjning och avloppsvattenrenning. Detta medför att i den jämförande ekonomiska bedömningen adderades ingen kostnad för ökad mängd avloppsvatten, bestående av retentat, vid installation av RO. I och med detta antogs retentat ha tillräcklig kvalitet för att vara lämplig för behandling i den kommunala avloppsreningsanläggningen.

Jämförelse av diskonterade kassaflöden för alla fall kontra referensfallet visar att alla fall sparrar pengar jämfört med basfallet över en tidshorisont på 20 år, se Figur 8. Återbetalningstiden varierar mellan 3 och 9 år, där de mest fördelaktiga fallen är att Arla återanvänder kondensatet internt och det minst fördelaktiga är att vatten skickas till det kommunala vattenverket för att renas till dricksvatten. Den drivande faktorn till resultatet är kopplad till kostnad för transport av vattnet, i detta fall med rör. Utöver sträckan som vattnet behöver transporteras så spelar mängden vatten som kan återanvändas också stor roll. Detta är egentligen inte särskilt oväntat i och med att kostnaden för rördragning i mestadels är knuten till installationen. Till följd av detta har rördragningen behandlats som en fast kostnad per meter, med andra ord har kostnaden för rördragningen antagits vara oberoende av mängden vatten som transporteras.

![Diagram](image.png)

Figur 8. Potentiell kostnadsbesparing för olika vattenbesparandeåtgärder i Visby givet systemgränserna i ...
Potentialen som respektive fall har att bidra till förbättrad dricksvattensituation i Visby har beskrivits dels i form av förbättrade resurseffektivitet (Figur 9) och som antal hushålls dricksvattenbehov som besparingen kan försörja (Figur 10). Alla fall visar en ökning av tillgängligt vatten (minskning av vatten/per producerad mjölk, ökning av hushållens vattentillgång) jämfört med grundscenariot. Fall 3, 4 och 6 producerar mest vatten eftersom dessa fall använder mest kondensat.

Tabell 4. Sammanställning av de sex fall som analyserats i Visby.
Figur 9. Resursutnyttjande, m³ kommunalt dricksvattenbehov (Arla och Protos) för att producera en m³ mjölk för respektive fall i Visby.

Figur 10. Dricksvattenbesparing för respektive fall uttryckt som antalet hushålls dricksvattenbehov som besparingen kan försörjas. Dricksvattenbesparing avser skillnaden i total dricksvattenförbrukning mellan befintligt system och efter implementering av åtgärd. En besparing innebär minska belastningen på vattentäkterna.

Driftskostnader för att uppradera restvattnet för respektive fall finns beskrivna i Figur 11 och Figur 12. I samtliga fall utgör energi- och underhållskostnader den största andelen av kostnaderna, även om de i allmänhet är ganska jämnt fördelade mellan kostnadskategorierna. Den totala behandlingskostnaden är i stort sett i linje med
Kehrein et al. (2021) som visar UF+RO OPEX för kommunalt avloppsvatten på 0,306 EUR/m³. I detta värde har bortskaffande av retentat subtraherats eftersom detta inte förväntas krävas i Visby-fallet där kvaliteten på retentat antas vara tillräcklig för behandling i det kommunala reningsverket (se Tabell 9 i bilaga 8.2).

Figur 11. OPEX/m³ uppraderat kondensat i Visby.

Figur 12. Visby OPEX för respektive fall.

Figur 12 visar att när kostnaden för dricksvatten inkluderas som en del av bedömningen är det den som har störst inverkan jämfört med kostnaderna kopplade till att uppradera restvatten.

I Figur 13 visas ett exempel på fallens känslighet för prisutveckling (energi och vatten), i exemplet visas resultatet för fall 2 med fall 1 som referens. Detta gjordes eftersom dessa två faktorer kan få en mycket varierande prisutveckling jämfört med basinflationen i framtiden. Svenskt Vatten föreslår till exempel att en ungefärlig årlig
ökning på 4 % utöver inflationen behövs i hela Sverige för att möta kostnader i samband med åldrande infrastruktur, ökade miljökrav och klimatförändringar (2022).

En ökning av energiprisutvecklingen har endast en liten negativ inverkan på kostnadsbesparingarna som erhålls från minskad vattenanvändning för fall 2. I jämförelse har en ökning i utvecklingen av dricksvattenpriserna en stor inverkan på resultatet och uppmuntrar till genomförande av vattenbesparande åtgärder. Den ökade besparingen som ses för inflationsfallet med större vattenpris härrör helt från den ökade kostnaden för köpt vatten (basfallet). Denna bedömning jämför endast känsligheten för en fast ökning av prisutvecklingen för vatten och energi, men tar inte hänsyn till sannolikheten för eller storleken på framtida prisökningar på energi eller vatten. Som visas i Figur 14 kan energipriserna vara mycket volatila från år till år, vilket innebär att OPEX från år till år också kan variera, men förväntas fortfarande vara billigare än vatteninköp.

Figur 13 Visby känslighet mot energi och vattenpriser.
3.2.1.2 Vimmerby

I Tabell 5 nedan presenteras de sex olika fallen studerade för Vimmerby i korthet. Fall 1 utgör referensscenariot, Fall 2–4 utgör interna effektiviseringslösningar för Arla, och Fall 5–6 är av symbioskaraktär. I samtliga fall, utom referensfallet, används både omvänd osmos (RO) och aktivt kol (AC) för att rena restvattnet. Dessa reningstekniker har tydligt pekats ut i de danska nationella riktlinjerna för mejerier och är vanliga metoder för att undvika problematik med biologisk tillväxt. UV-behandling kan också vara ett alternativ efter RO.
Tabell 5. Samanställning av de sex fall som analyserats i Vimmerby.

Fall 1 - Ingen åtgärd genomförs

- Arkiv: Dricksvatten
- Åtgärd: Ingen åtgärd
- Utkast:...

Fall 2 - Arla minimerar behovet av kommunalt dricksvatten, genom att rena kondensatet med eventuell överkapacitet från poleringsstegen i den nyligen installerade RO-anläggningen för skummjölk och polering med AC.

Fall 3 - Arla minimerar behovet av kommunalt dricksvatten, genom att rena kondensat med nytt RO-membran och polering med AC.

Fall 4 - Arla minimerar behovet av kommunalt dricksvatten, genom att infiltrera kondensat till grundvattnet och rena uttag med nytt RO-membran och polering med AC.

Fall 5 - Åbro nyttjar Arlas kondensat. Kondensat motsvarande 50% av Åbros vattenbehov infiltreras till grundvattnet och uttag renas med nytt RO-membran och polering med AC.

Fall 6 - Åbro nyttjar Arlas kondensat. Kondensat motsvarande 100% av Åbros vattenbehov infiltreras till grundvattnet och uttag renas med nytt RO-membran och polering med AC.

Figur 15 visar de diskonterade kassaflödena för alla fall jämfört med referensfallet. De ökade återbetalningsperioderna beror främst på den lägre kostnaden för dricksvatten i Vimmerby jämfört med Visby och detta överensstämmer med att vattenprissättningen är den mest betydande inverkan på återbetalningsperioden och den totala besparingen som undersöktes i Visby-fallet.
Återigen är fall med längre rörsträckor och mindre flöden de minst gynnsamma på grund av den fasta kostnaden som antas för anläggningsarbeten. Användningen av infiltration i Fallen 4, 5 och 6 är också en bidragande faktor till ökade återbetalningstider, även om påverkan inte är lika stor som rördragningskostnaderna.

I termer av effektivare dricksvattenanvändning analysen visar samtliga fall leder till ökad resurseffektivitet (Figur 16) jämfört mot referensfallet (Fall 1). Detta gäller både under nuvarande vattenanvändningsförhållanden och om planerade förändringar hos Arla genomförs fullt ut. Liknande resultat framgår i Figur 17 men där beskrivs besparingspotentialen som antalet hushåll som kan försörjas med det sparade vattnet. Störst potential uppstår i de fall där Arla kan återanvända vattnet (Fall 2, 3, och 4) eftersom Åbro har en lägre efterfrågan på vatten.

Figur 16. Illustrerar mängden dricksvatten som går åt för att hantera en viss mängd mjölk. Observera att i resultatet som visas i denna graf så har alla dricksvattenbesparingen hamnat på Arla foods för samtliga fall. Figur 17 visar inte Fall 5 och 6 då det inte anses vara ett relevant mått när Åbro genomför åtgärden.

Figur 17. Pävisar den potentiella effekten som besparing av dricksvatten kan få för Vimmerbys invånare. Graferna visar antalet hushåll som kan försörjas med dricksvatten för de olika åtgärderna. Dricksvattenbesparing avser skillnaden i total drickvattenförbrukning mellan befintligt system och efter implementering av åtgärd. En besparing innebär minskad belastningen på vattentäkterna.

Det är viktigt att notera att det teknokonomiska bedömningen i denna rapport baseras på årsmedelvärden. Detta innebär att analysen inte tar hänsyn till de flödesvariationer som finns dels under dagen, dels mellan säsonger. En konsekvens som variationer medför är att de skapar behov av lager så att tillgång och efterfrågan sammanfaller. De fallen som tar höjd för kostnader för att hantera variationer är fallen med infiltration, dvs 4, 5 och 6. Förutom lager tillför infiltration potentiellt ett extra reningssteg och en miljö, som jämfört med att lagra i tank, är mindre gynnsam för biologisk tillväxt (Hägg et al., 2018). En uppskattning av förmodad hållbarhet för olika vattenkvaliteter vid lagring i tank presenteras mer ingående i kapitel 3.3.2. Det bör också nämnas att nyttan med infiltration är beroende av flera aspekter så som lokala hydrogeologiska

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
förutsättningar vilket förväntas variera beroende på vart infiltrationen görs, vid Arla (fall 4) och Åbro (fall 5 och 6).

3.2.2 Perspektiv på olika besparingsåtgärder

I guiden ”Så jobbar vi tillsammans mot vattensymbios lokalt” i kapitel 8.1 beskrivs behovet av att ge aktörer möjlighet att tillsammans identifiera och engagera sig för att utveckla lösningar som är väl anpassade efter det lokala behovet. I guiden finns det förslag på aktiviteter som syftar till att underlätta samarbete. En nyckel för framgångsrikt samarbete är att det finns en ömsesidig förståelse för skilda aktörers perspektiv på olika möjliga framtidsscenarier. I detta projekt användes frågeformulär och workshops för att samla och tydliggöra dessa olika perspektiv löpande under analys och utvärdering av beskrivna symbiosmöjligheter.

En sammanställning av projektdeltagarnas bedömning av genomförbarheten av olika åtgärder för att minska belastningen på dricksvattenresursen presenteras i Figur 18 (Visby) and Figur 19 (Vimmerby). Åtgärder som bedöms mer troliga har högre siffror och mindre troliga åtgärder har lägre. Figuren visar att aktörerna är eniga om att intern effektivisering är den mest troliga åtgärden. För scenerier med symbios framgår det att utav resultatet från de tillfrågade aktörerna att ingen ser sig själv som den aktör som bör vara ansvarig för att kvaliteten uppfylls. Det bör dock noteras att aktörer har uttryckt det som svårt att vikta de tre symbiosscenarierna mot varandra. Det har kommenterats att symbios skulle kunna vara mer attraktivt då det har potential att bidra till störst besparing.
Figur 18. Bedömning av genomförbarheten av olika åtgärder för att minska belastningen på dricksvattenresursen i Visby.

Tabell 6 sammanfattar perspektiv från de olika aktörerna för några av de alternativ som utforskats i projektet, inklusive intern vattenåtervinning, schemalagd vattenanvändning i området och fysisk symbios. För symbios presenteras också de olika perspektiven med avseende på vem som skulle ta ansvaret för symbiosen. Det är värt att notera att samtliga åtgärder har unika karaktärsdrag avseende, komplexitet, potentiell nytta, och lönsamhet vilket också påverkar effekterna av att genomföra en viss insats.

För att utveckla symbiosamarbeten som fungera långsiktigt är tillit en avgörande aspekt. Inom projektet har dels tillit till den enskilda individen, dels tillit till de företag som planeras ingå i samarbetet lyfts som viktiga aspekter ur ett säkerhetsperspektiv. Ytterligare än utmaning med symbios är att de kan kräva lång förberedelse för att implementera, Kalundborg eco-industrial har utvecklats under årtionden.

Tabell 6. Åtgärder för att minska belastningen på dricksvattenresursen samt ett urval av karaktärsdrag för dessa.
<table>
<thead>
<tr>
<th>Åtgärder för att minska belastning på dricksvattenresursen</th>
<th>Karaktärsdrag</th>
</tr>
</thead>
</table>
| Intern effektivisering | • Inkluderar åtgärder som bidrar till minskad åtgång av vatten samt åtgärder som bidrar till intern återanvändning av vatten
• Ger snabb effekt
• Pågår kontinuerligt
• Uppevis som lättare att få lönsamt
• Företaget har fullständig kontroll över risker (leverans och kvalitet)
• Kan bidra till förbättrad resiliens med avseende på vatten jämfört med att inte göra någonting |
| Förflytta behov, schemalägg produktion för att minimera negativ inverkan. | • Ger ingen inverkan på totala förbrukningen
• Ses som en omöjlighet av flera aktörer
• Internt skulle det ev. fungera. Men i ett samarbete skulle det bli svårt.
• Svårt att påverka själva behoven. Vi kan mest informera och påverka mängden men självfallet försöka minimera eller utesluta vissa behov. |
| Symbios med andra aktörer, oavsett vem som tar ansvar för kvaliteten | • Det är oklart vem som ska ta på sig kostnaderna och riskerna med att leda symbiosen.
• Dagliga variationer kan vara mer komplexa än att hantera sambios, tex när kvalitén på vattnet varierar för att strömma med olika ursprung blandas.
• Oklart hur konsumenterna kommer att reagera (positivt eller negativt)
• Risken delas mellan aktörerna.
• Symbiosens affärssammanhang måste gynna alla aktörer
• Symbios kan bidra med en naturlig plattform för gemensamt lärande. |
| Symbios med andra aktörer, tredje part ansvarar för kvalitet | • Eftersom de flesta aktörer föredrar att inte ha något ansvar kan en tredje part potentiellt bäst tillgodose alla parters behov. |
| Symbios med andra aktörer, regionen alt. kommunen ansvarar för kvalitet | • Potentiellt ett enklare upplägg då vattnet skulle kunna likställas med övrigt kommunalt dricksvatten.
• Kommunerna kan vara positiva eller negativa till detta alternativ beroende på den lokala situationen.
• Symbios kan bidra med en naturlig plattform för gemensamt lärande. |
| Symbios med andra aktörer, aktören med vattenkälla ansvarar för kvalitet. I detta projekt Arla Foods. | • Arla Foods har god rutin och erfarenhet av att hantera vatten, deras råvara, mjölk, innehåller mestadels vatten och kvalitetssäkring en viktig del av deras kärnverksamhet.
• Ansvar för uppradering av vatten för försäljning till externa är inte en del av deras kärnverksamhet.
• Symbios kan bidra med en naturlig plattform för gemensamt lärande. |

Symbios med andra aktörer och med mottagande aktör som ansvarig för kvalitet och schemaläggning där aktörer tillsammans sätter planer för produktion inför sommarsäsong för att anpassa utifrån förväntad tillgång och behov har inte ingått i den bedömning som genomförts inom ramarna för projektet men skulle kunna skapa värde.

Aktörer ombads också att överväga vikten av sex aspekter (finansiella, tekniska, sociala, samarbete, juridiska och kunders acceptans) för att implementera olika
vattenbesparingsåtgärder. Aktörerna ombads att poängsätta varje fall från 1 till 5 utifrån hur betydande de ansåg aspekten vara för implementering av vattenbesparande åtgärder (Figur 20). Resultaten i Figur 20 tyder på att finansiella aspekter, lagar och tillstånd och kunders acceptans ansågs vara de viktigaste. Tekniska aspekter är sannolikt inte rankad högre eftersom vattenreningstekniken är väletablerad och demonstrerad. För Vimmerby och Visby studerades även huruvida det gick och dra några generella slutsatser mellan industriella och kommunala aktörer. Trots att det finns en viss variation mellan de olika aktörerna identifierades inga specifika skillnader mellan industriella och kommunala aktörer.

![Figur 20. Perspektiv på aspekter som är viktiga för symbios. Genomsnittsvärden från alla svar i regionen. 1 är inte viktigt och 5 är mycket viktigt.]

3.3 Hur kan implementering av vattensymbios underlättas?

En stor del av tiden i projektet har ägnats åt att undersöka faktorer som kan underlätta implementering av framtida vattensymbioser. Under den tidiga fasens workshops kom tydliga önskemål om att underlätta implementeringen genom att införa ett antal olika vattenklasser som skulle kunna användas som standarder vid överföringen inom och mellan det olika symbiosföretagens verksamheter. Olika vattenkvaliteterens hållbarhet, det vill säga hur lång tid man kan lagra vatten av andra kvaliteter än dricksvatten, lyftes också som en viktig kunskap för att underlätta och planera implementeringen. Den juridiska eller regelmässiga situationen var ytterligare en nödvändig faktor att ha
kunskap om och därför behov av förtydliganden för att underlättas implementeringen kunde identifieras.

3.3.1 Vattenklasser

I ett pågående parallellt projekt, ”Branschritlinjer för mejeri”, undersöks kraven och möjligheterna att införa kvalitetsbaserade vattenklasser. Preliminära resultat från detta projekt visar att framgångsrika vattenklasser bör definieras utifrån följande principer a) ursprungskällan till vattnet, b) hur vattnet upparbetas, och c) användningen av vattnet, se Figur 21, och förutom vattendefinitionen innehålla design och mätningsunderlag.

Figur 21. Enligt projektet lämplig principiell uppbyggnad av vattenklasser.

Det finns troligtvis fördelar med att kombinera de olika principerna för klassificeringen. Genom att ange ursprungskällan, gör man det möjligt att identifiera relevanta risker med det inkommande vattnet som ska ingå i symbiosen (risk för spårämnen etc.). För att lätt implementeras, är det lämpligt att i klassbeskrivningen inkludera upparbetningen via en beskrivning av i) en principiell layout, ii) en nyckelhärdsvaravara, och iii) en handhavandebeskrivning. De två första beskrivningarna, i

1 Här åsyftas ”återvunnet vatten” så som definierat enligt EUROPAPARLAMENTETS OCH RÅDETS FÖRORDNING (EU) 2020/741 av den 25 maj 2020 om minimikrav för återanvändning av vatten, vilket är begränsat till bevattningssamanhang.
och ii), tjänar främst som underlag för en förenklad initial teknokonomisk beräkning, medan den tredje och sista beskrivningen begränsar riskerna via ett standardiserat handhavandesätt (jämför COP, ”critical operational procedure” i HACCP-arbetet). Att även användandesituationen för vattnet, ligger till grund för vattenklasserna hänger återigen ihop med och riskerna. Exempelvis skall vatten som användas som kylvatten ha en väl kontrollerad hårdhet (på grund av risken för ”scaling”), medan hårdheten nästan helt saknar relevans för bevattningsvatten.

Om vattenklasserna dessutom ska vara transparenta krävs att det till varje vattenklass finns en bestämd parameterlista som beskriver de egenskaper som är av vikt för varje klass. Vidare behöver för varje egenskap mätbara, säkra (eller tolererbara) nivåer beskrivas. Det bör också (för att det ska vara lätt att implementera/använda) finnas beskrivna övervakningsprogram och kontrollprogram inklusive (standardiserade) mätmetoder. Till slut skall det i klassbeskrivningen även finnas överenskomna dokumentationskrav.

3.3.2 Hållbarheten

Vid implementeringen av ett vattensystem för symbios och återanvändning av ”annat vatten än av dricksvatten-kvalitet”, kommer hållbarheten av vattnet blir en naturlig begränsning då det är långt ifrån självlätt att det ”överskottsvatten” som finns hos den ”givande” symbiosaktören stämmer överens i mängd och tidpunkt med det behov som finns hos den ”användande” aktören inom symbiosen.

För att komma till rätta med detta, krävs någon form av lagring och därav är det intressant att se hur länge man på ett säkert sätt kan lagra vattnet utan att det uppstår betydande kvalitetsförluster.
Det finns få gjorda systematiska studier kring detta, och framför allt hänger det ihop med bristen på generella vattenkvaliteter, se kapitlet ovan. Inom mejeribranschen finns det dock en del data från Danmark på typiska hållbarhetsvärden (för ”RO-vatten” och ”ROP-vatten”) som varierar mellan 1 och 28 dagar beroende på vattenklass, se (Chapter 8 - Recovery & (re)use of water).

Tabell 7: Tabellen visar förmodad livslängd för olika vattenklasser definierade inom dansk mejerverksamhet. Tabellen är hämtad från Danish Dairy Sector Code (Chapter 8 - Recovery & (re)use of water).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>torage</th>
<th>Ambient</th>
<th>Chilled/ warm</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO-water</td>
<td>24 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO-water + UV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(single treatment)</td>
<td>4 days</td>
<td>6 days</td>
<td></td>
</tr>
<tr>
<td>RO-water + UV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(continuous treatment)</td>
<td>6 days</td>
<td>10 days</td>
<td></td>
</tr>
<tr>
<td>RO-water + past.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 days</td>
<td>10 days</td>
<td></td>
</tr>
<tr>
<td>ROP-water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROP-water + UV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(single treatment)</td>
<td>6 days</td>
<td>8 days</td>
<td></td>
</tr>
<tr>
<td>ROP-water + UV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(continuous treatment)</td>
<td>10 days</td>
<td>14 days</td>
<td></td>
</tr>
<tr>
<td>MBR-water + UV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(single treatment)</td>
<td>4 days</td>
<td>6 days</td>
<td></td>
</tr>
<tr>
<td>MBR-water + UV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(continuous treatment)</td>
<td>5 days</td>
<td>10 days</td>
<td></td>
</tr>
</tbody>
</table>

8 - Recovery & (re)use of water). Lagringstemperatur och lagringsteknik.

Hållbarheten under lagring begränsas främst av mikrobiologisk tillväxt, vilket framför allt bestäms av näringsinnehållet och temperaturen i vattnet. Men även andra faktorer såsom solljus, syreinnehåll och lagringstankens materialval och -omrörning påverkar.

Vid lagring av dricksvatten (i dagens distributionssystem), har man oftast ringa problem med hållbarheten, då dricksvatten när det lämnar vattenverken håller en låg temperatur, utsätts för lite solljus, har låg syreinblandning, innehåller få näringsämnen, och har en låg initial halt av förskämmande mikroorganismer. I distributionssystemet håller sig dricksvattnets fräscht betydligt längre än en vecka. Trots detta ser man en klar biofilmstillväxt på de flesta ytor som utsätts för dricksvattnet, redan efter några dagar om vattnet når rumstemperatur. Biofilmstillväxten i sig gör inte vattnet otjänligt som dricksvatten. För vattnet av andra kvaliteter än dricksvatten, som är aktuellt i symbiosen, är det troligt att hållbarheten är betydligt kortare och snarare handlar om timmar och dagar, än veckor. Detta behöver undersökas närmare, och system för lagring bör inkluderas i framtida dynamiska teknoekonomiska beräkningar.

Hållbarheten för vatten påverkas också starkt av systemets renhet. I dagens dricksvattendistributionssystem sker regelbunden rengöring, framför allt av vattentorn, men även av distributionsrören. Frekvensen på denna rengöring varierar från typiskt
en gång per år i vattentornen, till kanske högst en gång var femte till var tionde år i vattenledningsnätet. I vattenledningsnät för ”vatten av andra kvaliteter än dricksvatten” är det troligt att rengöringen behöver ske oftare. Troligtvis på dags- eller åtminstone veckobasis.

Inom livsmedelsindustrin finns redan idag helautomatiska rengöringssystem, s.k. CIP-system, för rör- och tank-tvätt inklusive återanvändning på såväl energi (varmvatten) som rengöringschemikaler. Merkostnaden för att utnyttja sådana system även för symbiosvattenledningarna är troligtvis ringa, men naturligtvis innebär det en betydande ökning av såväl investerings- som driftskostnad om den typen av CIP-system inte finns tillgängligt inom symbosen. Detta behöver undersökas närmare, och system för rengöring bör inkluderas i framtida dynamiska teknoeconomiska beräkningar.

3.3.3 Lagar och regler

Idag finns det, till vår kännedom, inga direkt tvingande lagar eller regler som kräver vattensymbios mellan företag utan drivkraterna är snarare: risken för vattenbrist, en önskan om att minska dricksvattenkostnaderna (egentligen oftast önskan om minskad avloppsvattenmängd), och en uttalad hållbarhetssträvan (mer om drivkrafter finns i en annan del av denna rapport).

För det interna vatteneffektivitetsarbetet har det börjat komma krav från lagstiftningsshåll, främst då för större företag (i vissa branscher) inom ramen för Industriutsläppsdirektivet (IDE), där det allmänna kravet om att använda ”Bästa tillgängliga teknik” numera även innefattar teknik för ”Återvinning och/eller återanvändning av vatten”. Det är högst troligt att de branscher som ännu inte har dessa krav i sina BAT-slutsatser inom sin del av IDE-tillämpningen kommer att få dessa krav vid nästa branschrevision.

I dagens lagstiftning finns det, till vår kännedom, få särskilda regler kring återanvänt vatten. Återanvänt vatten finns dock nämnt i två olika (men närbesläktade) sammanhang, livsmedelshygien och bevattningsområdena inom Jordbruksutbildningen, ibland det avloppsvatten som används utförs enligt IDE-direktivet. Detta följer från den allmänna rådningen att såväl dricksvatten som avloppsvatten ska behandlas som likartade material, från den allmänna regeln att vatten som tillförs människor ska vara av minst lika god kvalitet, samt från den allmänna regeln att alla vattensorter ska förde till samma effektivare användning av vatten som återanvänds.

Återanvänt vatten i samband med livsmedelshygien är av intresse för symbosen både i Visby och Vimmerby och enligt EURAPARLAMENTETS OCH RÅDETS FÖRORDNING (EG) nr 852/2004 av den 29 april 2004 om livsmedelshygien, Bilaga 2 Kapitel VII VATTENFÖRSÖRJNING, §3 gäller följande:

§3. Återanvänt vatten som används vid bearbetning eller som ingrediens får inte utgöra någon risk för kontaminering. Det skall hålla dricksvattenkvalitet, såvida inte den behöriga myndigheten är övertygad om att vattenkvaliteten inte kan påverka det färdiga livsmedlets lämplighet.

Lite tidigare i samma förordning står det dessutom i §2 följande:

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
§2. Om annat vatten än dricksvatten används för exempelvis brandbekämpning, framställning av ånga, kylning och andra liknande ändamål skall det ledas i särskilda, vederbörigen märkta ledningssystem. System för vatten som inte är avsett att användas som dricksvatten får inte ha någon förbindelse med dricksvattensystemen och tillbakaströmning skall inte kunna ske till dessa.

Och förs i Bilaga 2, Kapitel VII står i §1a) följande:

§1. a) Försörjningen av dricksvatten skall vara adekvat, och detta dricksvatten skall användas när det är nödvändigt att säkerställa att livsmedlen inte kontamineras.

Livsmedelsverket försöker på sin hemsida förklara detta genom texten: ”Livsmedelsföretag ska använda vatten av dricksvattenkvalitet när det är nödvändigt för att livsmedlen inte ska riskera att kontamineras. Se kapitel VII i bilaga II till förordning (EG) nr 852/2004. Det innebär att annat vatten än dricksvatten ibland kan användas.”.

De påpekar dessutom att det finns (i tidigare kapitel i samma förordning och bilaga) några speciella tillfällen med uttalade krav på att det vatten som används, måste vara av dricksvattenkvalitet. Dessa är: Sköljning av livsmedel (Bilaga 2, Kapitel II, §3), och i tillfälliga livsmedelsberedningslokaler (Bilaga 2, Kapitel III, §2 e).

Tyvärr finns det i denna förordning ingen definition av vad som räknas som ”återanvänt vatten”, däremot finns det tydligt definierats vad som räknas som dricksvatten i artikel 2 Definitioner: ”dricksvatten: vatten som uppfyller minimikraven i rådets direktiv 98/83/EG av den 3 november 1998 om kvaliteten på dricksvatten”. Huruvida ”återvunnet vatten” måste skilja sig från dricksvatten eller ej är inte klarlagt. Hänvisningen ännu inte uppdaterad till ”Europaparlamentets och rådets direktiv (EU) 2020/2184 om kvaliteten på dricksvatten”, med det nya dricksvattendirektivet, men det är av mindre betydelse då den svenska lagstiftningen på området är uppdaterad och för dricksvatten gäller enligt Livsmedelslagstiftningen (LIVSFS 2022:12) att:

6§ Dricksvatten ska vara hälsosamt och rent. Dricksvatten anses vara hälsosamt och rent om det

1. inte innehåller mikroorganismer, parasiter och ämnen i sådant antal eller sådana halter att det utgör en potentiell risk för människors hälsa, och
2. uppfyller de gränsvärden som anges i bilaga 1”.

17§ Verksamhetsutövare som producerar dricksvatten ska ta fram ett skriftligt förslag till program för regelbundna undersökningar (undersökningsprogram) i enlighet med de parametrar och undersökningsfrekvenser som anges avseende utgående dricksvatten i bilaga 1 och bilaga 3, avsnitt A samt avsnitt B, tabell 1 och 2.

24§ Provtagning av dricksvatten för mikrobiologisk analys ska utföras i enlighet med SS-EN ISO 19458.

I paragraf 34 finns dock en möjlighet att använda annat vatten än dricksvatten, vilket öppnar upp möjligheterna för symbiossammanhang:
Kontrollmyndigheten kan besluta att en livsmedelsföretagare ska undantas från dessa föreskrifter i fråga om dricksvatten som används specifikt för dennes livsmedelsverksamhet. Ett sådant undantag får endast meddelas om

1. kvaliteten på vattnet inte bedöms kunna påverka det färdiga livsmedlets säkerhet och
2. livsmedelsföretagaren kan visa att skyldigheter följs i relevant unionslagstiftning på livsmedelsområdet, särskilt bestämmelserna om förfarandena för principerna för faroanalys och kritiska styrdon och avhjälpande åtgärder.

Summerat borde allt ovanstående resultera i att det är möjligt att använda "annat vatten än dricksvatten" under förutsättning att a) man kan visa att det inte utgör en fara/risk, b) man har ett lämpligt övervakningsprogram och att c) man har fått ett godkännande i förväg.

Det har inom ramen för Nationella samordningsgruppen för dricksvatten startats ett arbete bland de svenska myndigheterna för att se över kunskapen och lagstiftningen kring tekniska lösningar och hälsoriser av återvinning/återanvändning av tekniskt vatten för hushållsavtjänst. Vid samråd med regeringskansliet fick Livsmedelsverket i uppdrag att under hösten 2023 ta fram ett förslag på uppdrag och föreslå ansvarig myndighet för uppdraget.

Summerade slutsatser från den myndighetsgemensam workshoppen lyfte fram:

i) behovet av att klargöra myndighetsansvar genom att: ansvariga myndigheter för tekniskt vatten behöver identifieras; och att ansvarsfördelningen bör tydliggöras mellan myndigheter för frågor som berör återvinning/återanvändning.

ii) Behovet av lagkrav och regler så som: införandet av "Tekniskt vatten" i LAV (Lagen om allmäna vattentjänster), där tekniskt vatten behöver kunna erbjuda på samma sätt som övriga vattentjänster; Miljölagstiftningen kan behöva ses över i förhållande till avloppsvatten, spullvatten, dagvatten och regnvatten; Kvalitetskrav på tekniskt vatten, inklusive kvalitetsklassning av olika typer av tekniskt vatten beroende på slutanvändning; Ansvar för tekniskt vatten. Tankar på att se över möjligheten att överföra ansvaret från producenter till användare. Många fler kan komma att bli producenter om man återvinner/återanvänder vattnet lokalt och då får dessa ett producentansvar som de kanske inte kan hantera.

iii) Behov av vägledningar kring: tillståndsprövningar. Just nu är det exempelvis svårt att göra riskbedömningar och vilken bedömning som görs kan därför skilja sig mycket åt mellan handläggare; kvalitetskrav och kvalitetsklassning av tekniskt vatten men då är det lämpligt att lagstiftning måste vara på plats innan dess; analyser kopplat till kvalitetskraven på tekniskt vatten. Under workshoppen identifieras att det idag finns vissa oklarheter kring analyser av återvunnet vatten, exempelvis kring nematodanalyser av bevattningsvatten, där det inte finns metoder tillgängliga. Det bör vara tydligt vad som skall analyseras och analysmetoderna bör finnas tillgängliga; vatteneffektivisering; faror i olika typer av intagsvatten, samt hur detta kan påverka hälsoriksen. Idag skiljs på olika typer av intagsvatten, men här behövs vägledning om och hur olika intagsvatten påverkar olika risker, både hälsoriser, men även exempelvis tekniska utmaningar som kan medfölja. Till slut
konstaterades även behovet av att koppla ihop med vägledningarna kring tillståndsprövningar, för att underlätta rättssäkerheten och att liknande riskbedömningar görs.

4 Diskussion

Det övergripande syftet med projektet *Minskad belastning på dricksvattenresursen genom industriell-urban vattensymbios* var att utreda möjligheter och utformning av en vattensymbios som tar vara på mjölkakkondensatsvatten från Arla Foods mejerier i Vimmerby och Visby. Projektet hade också som syfte att utveckla och tillämpa en systematisk och skalbar intressentinvolverad arbetsprocess för lokal industriell-urban vattensymbios som kan tillämpas även utanför det specifika projektet.

 Arbetsprocessen

Det finns en tydlig och nödvändig roll för organiserade grupprosser när man utforskar potentialen att bilda nya symbioser. I det här projektet var de workshops som hölls under den divergenta fasen i början av projektet särskilt uppskattade av deltagarna som engagerade sig aktivt i de faciliterade aktiviteterna. NGT-aktiviteterna bidrog både till att belysa komplexiteten i den aktuella uppgiften och till att organiserar den kollektiva förståelsen av utmaningar och möjligheter i samband med dricksvattenförsörjning. Det var tydligt att varje partner kom med sina egna idéer om vilka symbiospotentialer som var genomförbara och vilket syfte symbiosen skulle uppfylla i det lokala sammanhanget. Genom att skapa ett öppet forum där enskilda aktörer kunde dela med sig av sina tankar och förhandla med andra skapades förutsättningar för analyser, vilket bidrog till transparens när projektet fortskred.

Utnamningar uppstod också under utformningen och genomförandet av engagemangsprocessen. Ur ett projektledningsperspektiv begränsade resebudgeten till viss del kontinuiteten i processen. Att hålla ytterligare 1–2 möten på plats i varje fallstudie skulle sannolikt ha gjort projektet mer interaktivt. Detta begränsade också den aktiva utvecklingen av gemensamma lärdomar i workshops med deltagare från både Vimmerby och Visby. Under den fas av projektet då detaljerade analyser genomfördes fick vissa partners mer fokus än andra. Även om samarbete och lärande fortfarande var möjligt för partners som inte var direkt involverade i ett visst ”fall” var det mindre direkt värde som upp fattades. Den dynamiska modellen var tänkt att bidra till att fylla detta gap genom att utveckla långsiktiga scenarier som kunde vara av intresse för alla partner, men på grund av utmaningar med att dela data kunde detta spår inte förverkliga sin fulla potential.

Dessa reflektioner är i linje med andra kunskapsområden från litteraturen och EU-projekt som har betonat vikten av relationer för att möjliggöra tekniska lösningar. I framtida projekt föreslår vi att större vikt läggs vid utformningen av engagemangsprocessen eftersom kostnaderna för denna aspekt av arbetet är väl försvarbara.

Resultaten och möjligheter för vattensymbios i Visby/Vimmerby

finns flera andra faktorer som påverkar möjligheten att transportera vatten mellan parter i en symbios (t.ex. stadsbilden och topografiska förutsättningar) men dessa har inte tagits i beaktning i den översiktliga nulägesanalys som genomförts i detta projekt.

En intressant skillnad mellan de två fallstudierna var tillgången till data på verksamheters vattenanvändning. I Visby är majoriteten av de kartlagda verksamheterna anslutna till det kommunala VA-nätet och förbrukningsdata är därmed dokumenterad och lättillgänglig. I Vimmerby däremot har många av verksamheterna egna vattentäkter och därmed är varken vattenförbrukningsdata eller data på vattentillgången lika lättåtkomlig för kartläggning. Detta försvårar analysen av både nuläge och framtida symbiosmöjligheter. Sannolikt skulle fler samverkansmöjligheter kunna identifieras i Vimmerby om dataunderlag för tillgång och förbrukning från både kommunala och enskilda vattentäkter vore mer heltäckande.

En annan utmaning under projektets genomförande var hanteringen av kommunal VA-data. Specifikt gällde detta information om grundvattenuttag och tillgång i de kommunala vattentäkterna i Visby. Information av detta slag är sekretessklassad och så är även delvis analysresultat baserad på denna information. Detta visade sig försvårade modelleringaktiviteterna och vattenbalansberäkningarna genomförda i projektet och begränsade omfattning och möjligheter till detaljerad scenarioanalys av framtida vattentillgång i Visby. Samtidigt finns mycket att lära från dessa erfarenheter som kan bidra till framtida vattensymbioser:

- Strukturer för säker datahantering, sekretessavtal, etc. bör finnas på plats redan i ett tidigt skede när symbiosmöjligheter som involverar kommunala vattentäkter skall kartläggas och utvärderas.
- Detaljerade kunskaper om uttagskapacitet (idag och under olika framtidsscenerier) från lokala vattentäkter kan ha ett stort värde i design och utvärdering av vattensymbioslösningar. Samtidigt kräver detta omfattande dataunderlag och expertkunskap (t.ex. hydrologi, geologi, modellering) som sällan finns hos de kommunala eller privata aktörer som ämnar ingå i symbiosen.
- En lättanvänd hydrologisk modell, som sammanställer befintlig kunskap om den lokala hydrologiska kontexten, skulle kunna nyttjas för att få en överblick av vattentillgången i en kommun eller tilltäckt symbiosområde, och för att utforska hur en tilltäckt symbios kan bidra till god hydrologisk status.
- I detta projekt har vi inte nått hela vägen till fullskalig applicering av en sådan modell men den modell som utvecklats för Visbys vattentäkter har potential att vidareutvecklas och nyttjas för ovan syfte i framtida symbiosatsningar.

Teknoekonomiska analysen, hinder & möjligheter

Den teknokonomiska bedömningen i projektet beaktade kostnader utifrån perspektivet av ett generellt företag med kommunal dricksvattenförsörjning. Detta medförde att i analysen gjordes något av följande antaganden:

- företagen äger all infrastruktur för vattenrening som krävs,
- en tredje part äger infrastrukturen och säljer vatten med ett påslag (påslaget ingår inte i studien)
- kommunen äger all infrastruktur för vattenrening och överför kostnaden direkt till företagen.

På grund av detta kommer den ekonomiska bärkraften för alla lösningar ur ett företagsperspektiv att bero på den relativa kostnaden för vattenrening lokalt jämfört med kostnaden för att köpa dricksvatten från kommunen. Effekterna av detta framgår...

Med tanke på hur lokala vattenpriser påverkar kostnader eller besparingspotential är lokaliseringen en nyckelfaktor för om det finns ett ekonomiskt incitament för företag att återanvända vatten, antingen internt eller som en del av en symbios. Om dricksvattenpriserna stiger i en snabbare takt än bakgrundsinflationen, vilket Svenskt Vatten (2022) föreslår, förbättras de ekonomiska argumenten för företag att återanvända vatten. Å andra sidan finns det också en risk att de ekonomiska förutsättningarna försämras om modellerna för vattenprissättning ändras inom en kommun. Med tanke på detta är det viktigt att det finns en öppen dialog om vattenprissättning mellan kommuner och industrin där ekonomiska incitament är en primär drivkraft för genomförandet av vattenbesparingar inom industrin.

Ett alternativ som inte undersöktes i denna studie är att kommunen äger symbiosinfrastrukturen och sedan tar ut kostnaden i det allmänna vattenpriset för alla användare i området. Detta är i praktiken en utvidgning av systemgränsen till att omfatta alla vattenanvändare i området, inte bara företag. Ett sådant tillvägagångssätt skulle kunna öka vattentillgången för alla användare, med kostnadskonsekvenser för användarna beroende på befintliga priser och modeller. De juridiska konsekvenserna och den sociala acceptansen av detta skulle behöva undersökas ytterligare.

Även om denna ekonomiska bedömning beaktar kostnader och besparingar för industrin jämfört med att köpa dricksvatten, tar den inte hänsyn till andra aspekter såsom risken för vattenbrist och dess potentiella kostnadsseffekter för ett företag. Den tar inte heller hänsyn till aspekter som social acceptans att bedriva verksamhet. Den ekonomiska attraktiviteten av att genomföra vattenbesparingar kan förbättras när dessa faktorer också inkluderas i en ekonomisk bedömning.

I den teknisk-ekonomiska bedömningen konstaterades också att kostnadsbesparinger jämfört med att köpa dricksvatten var känsliga för sträckan som vatten behöver transporteras. I allmänhet leder små volymer och långa avstånd till sämre ekonomiska resultat. Detta beror på att kostnaderna till stor del är relaterade till anläggningsarbeten för att lägga rör.

5 Slutsatser

Arbetsprocess och samarbete

- Finns ett stort värde i form av kunskapsutbyte att ha med flera lokala aktörer i den divergerande fasen.
• Att organisera och genomföra fysiska workshops kräver tid och ytterligare budget, men värden av denna aspekt bör inte underskattas.
• När symbiosmöjligheter börjar ta form kan det innebära att vissa aktörer behöver bli mer inkluderade i utvärderingen. Det kan vara svårt att i förväg förutsäga vilken roll som olika aktörer kommer få under den divergerande fasen.
• Att prioritera en blandning av metoder och perspektiv i analysen kan skapa värde för alla parter, även de som inte är involverade i en lovande symbios.
• Avsätt tid för protokoll för datadelning tidigt för att undvika att processen tappar fart.

Resultat

• VA-bolagens prissättningsmodell för vatten och avlopp har stor påverkan på den ekonomiska lönsamheten av en industriell-urban vattensymbios. I Visby bedömdes både intern återanvändning och vattensymbios som ekonomiskt lönsamma lösningar, men inte i Vimmerby.
• Den ekonomiska lönsamheten av en vattensymbios sjunker ju längre transportbehovet är och ju mindre vattenvolymer som skall utbytas.
• De utvärderade lösningarna var okänsliga för variationer i energipriser.
• Återbetalningsstiden för lösningar med intern rening och recirkulering tenderar vara kortare än symbioslösningar mellan aktörer. Merparten av aktörerna i projektet framhöll intern recirkulering som en enklare lösning att implementera.
• Majoriteten av aktörerna i projektet framhöll vattensymbios som en intressant lösning men ville inte vara ansvarig för den nödvändiga infrastruktur som symbiosen innebär.

6 Nästa steg

Även om resultatet från den teknoekonomiska bedömningen visar på att vattenbesparande åtgärder skulle kunna vara lönsamt i Visby bör en mer detaljerad teknoeconomisk bedömning utföras för de mer sannolika fallen innan implementering. Det finns bland annat behov av att inkludera variationer över dygnet och mellan säsonger. Kostnader kopplat till lagring av vatten, utvärdering av biologiska risker vid lagring av vatten av olika kvalitet, och strategier för att mildra negativa effekter är exempel på aspekter som bör undersökas i en sådan analys. Dessutom bör bedömningen förstärkas genom att inkludera mer exakta kostnadssuppgifter (till exempel leverantörspriser på utrustning) och inverkan av marknadsfluktuationer.

För att utveckla bedömningen ytterligare finns det behov av att utreda osäkerheter, dynamik och risker kopplat till framtida vattentillgång och brist situationer, prissättning av vatten, ägarstrukturer och ansvar när vatten säljs i en symbios. Detta innefattar både analys av vilka typer av risker en symbios kan bidra till att minimera (till exempel genom ökad redundans och flexibilitet i vattenförsörjningskedjan), vilka nya risker en symbios kan medföra (förändrad vattenkvalitet, nya ansvarsstrukturer, etc.), och hur förändringen i riskprofil påverkar symbiosens lönsamhet.

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Chapter 8 - Recovery & (re)use of water. Danish Dairy Sector Code.

Gustafsson, E. (2019). Recycling of condensate water from milk power production, A pilot study investigating the usage of ultrafilter for purification of condensate water considering requirements for hygiene and economical gain.

This work is licensed under CC BY 4.0. https://creativecommons.org/licenses/by/4.0/

SGU. (2012). Klimateuts påverkan på koncentrationer av kemiska ämnen i grundvatten.

8 Bilagor

8.1 Så jobbar vi tillsammans mot vattensymbios lokalt

Industriell Symbios - Behovet av det mänskliga initiativet

Det övergripande syftet med denna guide är att överföra de lärdomar som erhållits från arbetet med kartläggningsprojektet för vattensymbios i Vimmerby och Visby. Kartläggningen har genomförts som en del inom två parallella HAV-finansierade projekt, båda med titeln: Minskad belastning på dricksvattenresursen genom industriell-urban vattensymbios. Utöver erfarenheter från dessa två projekt bygger detta vägledningsdokument även på erfarenhet som RISE har av industriell och urban symbios (IUS), både från samordning av Sveriges Centrum för Industriell och Urban Symbios och från EU Horizon 2020 projektet CORALIS. Erfarenheter från båda dessa sammanhang har bidragit till synsättet att IUS är minst lika mycket beroende av mänskligt åtagande och samverkan som av innovativa tekniska lösningar. Detta dokument fokuserar därför på hur individer interagerar i processen att bygga en IUS och hur dessa interaktioner kan stöttas och underlättas.

Val av intressenter

Potentialen för att skapa en (vatten)symbios utgår ofta från en eller några större industriella resursanvändare, som har stora restflöden och därför anses som passande kandidater för att ingå i en symbioslösning. Vad som kan vara mindre uppenbart är hur en symbioslösning kan påverka andra, mindre resursintensiva, industriella eller samhälleliga aktörer, och hur dessa kan bidra med nya perspektiv och ytterligare kunskap, vilket kan förbättra identifieringen av möjliga lösningar och hinder. Som med alla typer av urban-industriella symbiosprojekt står samarbete mellan intresserade och berörda parter i centrum. Detta inbegriper flera perspektiv som bör ges utrymme att uttryckas - och ges lika stor hänsyn vid sidan av sökandet efter potentiella tekniska lösningar. Det är därför av yttersta vikt att både stora och små intressenter involveras i ett tidigt skede av symbiosprocessen.

Inrätta en öppen process

Åven om det kan vara frestande att börja med att matcha restflöden med mottagare är det också bra att placera en potentiell framtida teknisk IUS-lösning i det bredare sammanhang som den måste fungera inom. Förutom urvalet av intressenter kan mötesstrukturen ha en stor inverkan på mångfalden av idéer som läggs fram för övervägande. Det kan därför vara bra att utforma möten som skapar en känsla av att utforska potentialen hos IUS i ett bredare sammanhang.

Mötesaktiviteter:

Ruta 1 ger ett exempel på hur ett typiskt möte kan drivas för att skapa ett klimat som gynnar en dialog som omfattar flera perspektiv från olika aktörer i stället för att begränsa den till idéer från en eller två aktörer.

This work is licensed under CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/]
En sådan alternativ mötesstruktur kan kännas obekväm eller främmande för vissa deltagare - därför är det viktigt att förklara syftet och spelreglerna bakom en sådan aktivitet i ett tidigt skede.

För att stimulera ett bredare samtal kan det vara bra att introducera ämnedområden så att deltagarna utmanas att utvidga sina tankebanor. Till exempel kan de perspektiv som nyttjas för att bedöma symbiosens mognadsgrad användas som ett ramverk för att skapa en bredare diskussion, ramverket inkluderar olika aspekter som behöver beaktas för att implementera en viss IUS:

- Lagar och regler
- Ekonomi
- Miljö
- Företags- och organisationsintressen
- Samhälle
- Teknik

Ett möte bättre än genomsnittet?

Lyckligvis finns det många tekniker som utvecklats för att förbättra ett traditionellt mötesformat. Nominal gruppmetodik (NGT) används ofta för att övervinna kognitiv ankring och se till att alla perspektiv i rummet får en chans att komma fram.

Ett första steg är att identifiera de viktigaste utmaningarna som mötet ska bidra till att lösa. Om du är organisatör av mötet kan du förbereda denna problemformulering före mötet och sedan be deltagarna att hjälpa till att förfina den när mötet börjar. Kontrollera att det råder konsensus innan ni går vidare.

Ge sedan deltagarna i uppdrag att arbeta individuellt i 10–15 minuter med att skriva ner sina idéer i relation till problemformuleringen. Det kan vara bra att ge deltagarna den specifika uppgiften att utveckla minst en idé för var och en av de aspekter som nämnts tidigare. Varje idé kan skrivas ner på ett separat papper eller en klisterlapp för att användas i nästa steget.

I det tredje steget fastställs tydliga regler för kommunikation, och deltagarna delar en idé i taget och ger en kort förklaring på 1 minut. Om deltagarna har skrivit ner sina idéer individuellt i steg 2 kan de placeras på en vägg eller whiteboardtavla som är synlig för hela gruppen. Fortsätt denna process på ett turbaserat sätt tills alla idéer har delats eller när återstående idéer är upprepningar av idéer som redan presenterats.

I ett sista steg kan deltagarna gruppera liknande idéer. Detta kan också ske parallellt med steg 3. Resultatet bör bli ett mycket bredare spektrum av information som kan registreras och användas vid framtida möten och beslutspunkter.

Ruta 1. Nominell gruppmetodik för att förbättra mötesprocessen i de tidiga stadierna av IUS-bildandet.
Smågrupper är ett annat användbart sätt att utveckla mer öppna diskussioner. Här är det lämpligt att kombinera deltagarnas olika intresseområden för att skapa olika grupper. Grupperna kan få mer specifika uppgifter, till exempel att utveckla 5 potentiella IUS-alternativ och identifiera intressenter som skulle behöva involveras. Efter en 20–40 minuter lång diskussion presenterar grupperna en sammanfattningsversion för de andra grupperna och bjuder därefter in till en diskussion med samtliga aktörer i syfte att komma fram till vilka typer av ytterligare undersökningar som behövs för att bedöma genomförbarheten av olika IUS.

Mötesformat och plats:

År 2023 är det rimligt att anta att de flesta intressenter har rimlig erfarenhet av online- och hybridmötesformat. Värdet av fysiska möten bör dock inte underskattas - särskilt inte i de tidiga faserna av ett projekt/process där IUS först övervägs. Som nämnts är relationer mellan intressenter en avgörande aspekt av IUS-utvecklingen - enligt vår erfarenhet möjliggör fysiska möten mer ad hoc-konversationer och personliga samtal som stöder utvecklingen av förtroende och kamratskap mellan intressenter. En annan fördel med fysiska möten är att de ger möjlighet att besöka olika intressenters anläggningar. Online- och hybridmöten fungerar sedan som ett komplement för att upprätthålla och bygga vidare på dessa relationer och samtidigt minska kostnaderna och miljöpåverkan i samband med resor.

Processledning

När spänningen från inledningen av processen svalnar och tydliga analysbehov börjar framträda är det viktigt att förstå hur de olika intressenternas roller kan förväntas utvecklas, vilka fallgropar som bör undvikas när det gäller informations- och datadelning och vilken roll projektets längd spelar.

Ledarskap och ägandeskap

För att påbörja en diskussion och process för att arbeta med IUS-frågor i ett lokalt sammanhang krävs ett aktivt initiativ. Detta kan göras genom att kontakta externa forskningsinstitutioner eller IUS-kompetenscenter som har erfarenhet av att arbeta med IUS-utveckling, men alla lokala aktörer kan också fungera som initiativtagare. Initiativtagaren är dock inte ensam ägare av IUS-projektet och det är viktigt att den person/organisation som har ansvaret överväger hur ägarskapet ska fördelas mellan de olika intressenter som identifierats. Denna diskussion bör föras redan i början av projektet och återkomma ofta. IUS är inte en engångsinsats utan ett kontinuerligt samarbete och kan kräva omprövning av tidigare fastställda ansvarsområden bland intressenterna.

Informations- och datadelning

När man börjar med ett öppet och utforskande tillvägagångssätt kan det vara svårt att från början veta vilka data som kommer att behövas för att bedöma olika IUS-alternativen. Genom att börja datainsamlingen i liten skala kan man undvika onödigt arbete genom insamling av onödiga uppgifter. När processen fortskrider kan det dock visa sig att säkerhetsnivåerna för olika datatyper kräver särskilda överenskommelser mellan parterna. Även om det kan verka rimligt att lämna denna uppgift tills mer konkreta databehov har identifierats kan detta leda till fördröjningar som hindrar

Projektplan

Genom att följa de tidigare rekommendationerna bör det vara möjligt att utveckla en relativt effektiv tidsram för den inledande kartläggningen av IUS. Detta kan ofta vara att föredra framför att förlänga projektet. I fallstudierna i Vimmerby och Visby bedömdes till exempel en tidsram på 14 månader vara lite för utspridd vilket störde kontinuiteten, särskilt eftersom projektplanen sträckte sig över flera semesterperioder. Även om denna längre tidsram gav nödvändigt utrymme för att hantera oförrätsedda utmaningar, kan en mer strömlinjeformad process med 4–6 månaders intensivt arbete vara att föredra.

Analys

Varje IUS har unika förutsättningar och analysmetoderna utvecklas ständigt, därför är det inte rekommenderat att i förväg ge specifika rekommendationer om hur analyser ska utföras i en förstudie. När man börjar med en öppen samarbetsprocess som vi har beskrivit i denna guide kommer flera analysmöjligheter sannolikt att dyka upp. Fortsatt dialog och strukturerade övningar kan hjälpa till att identifiera preferenser och tillhörande nyckeltal för olika intressenter och kan också leda till att man inser att ytterligare kompetenser bör rekryteras till arbetet. Ruta 2 beskriver hur vi justerade vår analys för att möta de förändrade förutsättningarna som uppstod i projekten i Vimmerby och Visby.

Generellt sett fann vi att en kombination av statiska och dynamiska metoder var effektiv, eftersom det blev tydligt att framtida förändringar i prissättning, produktionsstrategier, lokalt/regionalt klimat och rättsliga ramar var faktorer av

Ruta 3. Lärdomar på vägen mot IUS.

<table>
<thead>
<tr>
<th>Konceptet IUS som katalysator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vikten av att ha en öppen arbetsprocess blev tydlig för att bedöma potentialen av att etablera industriell symbios i Vimmerby och Visby.</td>
</tr>
<tr>
<td>Redan från projektstart verkade konceptet vattensymbios skapa engagemang och kreativitet hos projektdeltagarna. Under de workshops som genomfördes i början av projektet genererades idéer om flera olika symbiosmöjligheter. Genom gruppdiskussioner, utvärdering av implikationen av att investera och installera ny utrustning samt tvådisciplinära inspel blev det allt tydligare att IUS sannolikt inte är den mest lämpliga åtgärden i närtid för att minska belastningen på dricksvattenresursen. I stället blev det allt tydligare att några av de mest fördelaktiga åtgärderna för att minska trycket på lokala vattenresurser kunde komma från interna effektiviseringar av vattenanvändningen.</td>
</tr>
<tr>
<td>I och med den insikten skiftade projektet fokus, i stället för att fokusera alla ansträngningar på bildandet av IUS justerades den analytiska linsen till att ge värde i form av att adressera dagens utmaningar och samtidigt lika för att fortsätta att upprätthålla anledning för framtida intresse för våra intressenter.</td>
</tr>
</tbody>
</table>

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Avslutning

- Medvetet val av intressenter innebär att man inte bara identifierar potentiella industriella användare av restflöden utan också beaktar deras bredare påverkan på andra samhällsaktörer. Samarbete mellan alla berörda parter är avgörande för att säkerställa att olika perspektiv värderas vid sidan av tekniska lösningar.
- Genom att etablera en öppen process uppmuntras att symbiosen utforskas i ett bredare sammanhang. Innovativa mötesstrategier, till exempel Nominal Group Technique, främjar inkludering och nya perspektiv.
- Mötesformaten bör skapa en balans mellan fysiska och virtuella möten, och erkänna vikten av att bygga förtroende mellan aktörer, erbjuda rundturer i anläggningarna, och bygga relationer redan i de tidiga projektfaserna.
- För att leda arbetet med att utforma och utveckla industriell symbios måste projektledaren kunna hantera att intressenters roll, behov av att dela information och förmåga att engagera sig kan komma att förändras med tiden. Eftersom urban-industriell symbios bygger på ett kontinuerligt samarbete bör diskussioner om ägande och ansvar inledas tidigt och återkOMmA.
- Informations- och datadelning bör tas upp tidigt för att undvika oväntade förseningar. Tidiga diskussioner om datasäkerhet och integritet kan anpassas till projektets tidsplan.
- En strömlinjeformad tidsplan, cirka 4–6 månaders intensivt arbete, är att föredra för den inledande avgränsningen av IUS, för att säkerställa kontinuitet och fokus.
- När det gäller analys är flexibilitet avgörande på grund av varje projekts unika karaktär. En kombination av statiska och dynamiska metoder kan vara effektiv, med tanke på framtida förändringar i prissättning,Produktionsstrategier, klimat och rättsliga ramar.
- IUS kanske inte är lösningen på dagens utmaningar, men kan fungera som en katalysator för förbättrar förvaltning av vattenresurser nu och i framtiden.

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
8.2 Antaganden för den teknoekonomiska bedömningen

Figur 22 illustrerar antagen konfiguration av för reningsprocessen (RO membran) vilken användes för den teknoekonomiska analysen.

![Diagram](image)

Tabell 8 Teknikspecifika antaganden i TEA:n.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Värde</th>
<th>Källa</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO återvinningsgrad</td>
<td>90%</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
<tr>
<td>RO driftstid per dag</td>
<td>20 timmar</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
<tr>
<td>RO dagar i drift per år</td>
<td>350 dagar</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
<tr>
<td>RO flöde</td>
<td>40 L/m²</td>
<td>(Suarez, Fidalgo, & Riera, 2014)</td>
</tr>
<tr>
<td>RO matartryck</td>
<td>20 bar</td>
<td>Maxvärde från Suarez et al. (2014)</td>
</tr>
<tr>
<td>Verkningsgrad</td>
<td>70%</td>
<td>Antagande</td>
</tr>
<tr>
<td>Membranyta</td>
<td>37 m²/enhet</td>
<td>Standardstorlek på marknaden</td>
</tr>
<tr>
<td>Alkali reningskemikaliefrekvens</td>
<td>12 timmar</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
<tr>
<td>Syra reningskemikaliefrekvens</td>
<td>1 vecka</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Värde</td>
<td>Källa</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Alkali reningskemikaliekonscentration</td>
<td>2,5 L/m³</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
<tr>
<td>Syra reningskemikaliekonscentration</td>
<td>3,8 L/m³</td>
<td>(Suarez, Fernandez, Iglesias, Iglesias, & Riera, 2015)</td>
</tr>
</tbody>
</table>

Tabell 9 Vattenkvalitetsparametrar för RO processen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inflöde</th>
<th>Permeat</th>
<th>Retentat</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>40 mg/L</td>
<td>10 mg/L</td>
<td>310 mg/L</td>
</tr>
<tr>
<td>Konduktivitet</td>
<td>200 μS/cm</td>
<td>40 μS/cm</td>
<td>1640 μS/cm</td>
</tr>
<tr>
<td>Källa</td>
<td>Antagande</td>
<td>Konservativt värde från Suarez et al. (2014)</td>
<td>Beräknat</td>
</tr>
</tbody>
</table>

Tabell 10 Summerar ekonomiska antaganden som använts i nuvärdesberäkningarna.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skattesats</td>
<td>26%</td>
</tr>
<tr>
<td>Kalkyllänta</td>
<td>10%</td>
</tr>
<tr>
<td>Inflation</td>
<td>2%</td>
</tr>
</tbody>
</table>

Tabell 11 Antaganden kopplat till teknisk livslängd.

<table>
<thead>
<tr>
<th>Installationer</th>
<th>Teknisk livslängd i år</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membran</td>
<td>1</td>
</tr>
<tr>
<td>Aktivt kol</td>
<td>1</td>
</tr>
<tr>
<td>Rör</td>
<td>50</td>
</tr>
<tr>
<td>Pumpar</td>
<td>20</td>
</tr>
<tr>
<td>Filtrerramen</td>
<td>20</td>
</tr>
<tr>
<td>Membranets behållare</td>
<td>20</td>
</tr>
</tbody>
</table>

Tabell 12 Innehåller en samanställning av antagna kostnader inkluderade i analysen. Dricksvatten- och avloppskostnaderna är angivna exklusive moms.

<table>
<thead>
<tr>
<th></th>
<th>Kostnad - Visby Fall</th>
<th>Kostnad – Vimmerby Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunaldrickvattenkostnad</td>
<td>36,6 kr/m³</td>
<td>10,2 kr/m³</td>
</tr>
<tr>
<td>Kommunalt avlopp</td>
<td>35,8 kr/l</td>
<td>15,4 kr/m³</td>
</tr>
<tr>
<td>Elektricitet</td>
<td>1 kr/kWh</td>
<td>1 kr/kWh</td>
</tr>
<tr>
<td>Syra, reningskemikaliekonscentration</td>
<td>19,9 kr/l</td>
<td></td>
</tr>
<tr>
<td>Alkali, reningskemikaliekonscentration</td>
<td>35,8 kr/l</td>
<td></td>
</tr>
<tr>
<td>Aktivt kol</td>
<td>17,9 kr/kg</td>
<td></td>
</tr>
<tr>
<td>Byte av membran</td>
<td>5000 kr/enhet</td>
<td></td>
</tr>
<tr>
<td>Rörkostnad mellan aktörer</td>
<td>5000 kr/m</td>
<td></td>
</tr>
</tbody>
</table>
Kostnader och besparingar allokeras till företagen i symbiosen. Givet ovanstående kan analysen betraktas som holistisk för företagen som koncern.

Ingen förändring i dagvattenkostnad eftersom den baseras på yta (ej volym).

Kostnaderna förutsätts föra vidare till företagen som använder vattnet från det företag som bygger och äger ROP och rörledningar. Ingen rörelsevinst (när det gäller en tredje part) används i denna analys. Ingen rörelsevinst (när det gäller en tredje part) används i denna analys. För Visby fall sparar företagen pengar genom att minska mängden sötvatten som renas av kommunen. Återvunnet vatten kan färdas genom några av de kommunala behandlingsstegen för dricksvatten (punkt A i figuren) och sedan genom det befintliga dricksvattennätet. Inga kostnader har lagts till för detta, men det förväntas tillkomma och kommer då påverka utfallet något. Kostnader för remineralisering ingår inte.

För samtliga fall antas implementeringen ske under 12 månader. Framtida uppgraderingar av anläggningen beaktas inte i tidsramen.

Infiltrationskostnader har baserats på värden för sötvatteninfiltration från REF. Värden för infiltration av avloppsvatten har inte använts eftersom dessa redan ingår i denna studie. Ytterligare vattenreningskostnader för infiltration av avloppsvatten kan vara mycket varierande beroende på förbehandlingskvalitet och teknik som används.
8.3 Frågeformulär

Processen för att utveckla och utvärdera scenarier har varit iterativa i den mening att deltagande aktörer löpande har granskat och format det underlag som nyttjats för att utforma och analysera de utvalda symbioslösningarna. Detta har huvudsakligen genomförts antingen via mejl och vid behov genom digitala eller fysiska möten. I en av de sista iterationerna med företaget nyttjades frågeformulär för att samla insikter från samtliga aktörer. Eftersom frågeformuläret nyttjades för ett utveckla fallen och förbättra analysen skiljer sig fallen som beskrivs i frågeformulären mot det som presenterats i huvuddelen av slutrapporten.

Under projektets gång har Visby och Vimmerby utvecklats på olika sätt, vilket resulterade till två olika men snarlika frågeformulär. Frågeformulären finns tillgängliga nedan.

8.3.1 Visby

Frågor kopplat till vattensymbios i Visby

Fallen som presenterades under WS den 9/6 kan grupperas i två grupper:

Grupp 1 – innebär att Arla gör åtgärder som minskar påfrestningen på dricksvattenresursen

Grupp 2 – innebär att kondensatet renas i det kommunala reningsverket.

Nedan följer tre frågepaket; (1) inkluderar frågor som kräver lite mer tid och eftertänksamhet och fokuserar på frågor kopplade till det specifika grupperna, (2) inkluderar frågor som är mer utav karaktären ja eller nej och (3) inkluderar frågor kopplat till projektets struktur.

Frågepaket 1: Gruppspecifika frågor

När du svarar på frågorna fundera på vilken information som saknas för att kunna svara på ett framgångsrikt sätt. En samanställning av systemgränser och resultat från den ekonomiska bedömningen är sammanställt i figurerna nedan.

Basfallet (tidigare beskrivet som Fall 1) visas nedan.

![Diagram](attachment:diagram.png)

Figur 23 Illustrerar ett förenklat flödesdiagram över basfallet (tidigare beskrivet som Fall 1).
Grupp 1 – intern återanvändning (Fall 2 och Fall 4)

Figur 24 Flödesdiagram med systemgräns (gul streckad linje) för samtliga fall inkluderade i Grupp 1.

Figur 25 Besparingar med hänsyn till pegars tidsvärde jämfört med fall 1 (ut åtgärd). Positivt värde indikerar besparing jämfört med fall 1. Notera även att fallen inte är direkt jämförbara utifrån enbart detta resultat då tex inverkan av olika teknisk livslängd och resultatets noggrannhet är olika för de olika fallen. Under antagandet att Inflation = 2%, Kalkylräntan = 10% och Skattesats = 26%.

Q: Vad är din syn på huruvida Arla borde få stöd från andra regionala aktörer för att genomföra denna åtgärd, tex är det rimligt att Arla kan erbjudas?

- Lägre kostnad för dagvatten
- Utbildning (vid behov) kopplat kunskap om drift, lager, reningstekniker, etc.
- Att arrendera mark för vattenreningsanläggningen

This work is licensed under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Grupp 2 – Extern återanvändning (Fall 3 och Fall 5)

Figur 26 Flödesdiagram med systemgräns (gul streckad linje) för samtliga fall inkluderade i Grupp 2.

Figur 27 Besparingar med hänsyn till pegars tidsvärde jämfört med fall 1 (ut åtgärd). Positivt värde indikerar besparing jämfört med fall 1. Notera även att fallen inte är direkt jämförbara utifrån enbart detta resultat då tex inverkan av olika teknisk livslängd och resultatets noggrannhet är olika för de olika fallen. Under antagandet att Inflation = 2%, Kalkylräntan = 10% och Skattesats = 26%.

Q: Har Arla och kommunen någonsin diskuterat vad som skulle krävas för att nyttja kondensatet som en vattenkälla till vattenverket? Om ja, vad har diskuterats gällande barriärer? Om nej, skulle det vara intressant att påbörja en sådan dialog efter projektet?

Q: Vilken vattenkvalitet kräver kommunen för dricksvattenreningsverket? Skulle ROP-behandling behöva utföras innan rening i det kommunala vattenverket och skulle det vara tillräckligt?

också hur du anser att ansvar och risk om vattenkvaliteten inte håller måttet bör fördelas.

Q: ROP-systemet kan behöva placeras på eller i nära anslutning till Arlas anläggning för att minska risken för tillväxt i ledningen till det kommunala reningsverket. Skulle det vara acceptabelt att placera reningsanläggningen inne på Arlas område även om den inte ägs av Arla?

Q: Hur lång tid skulle du uppskatta att Arla kan garantera att kondensatet inte kommer nyttjas av annan aktör? Alternativt uppskatta gärna hur lång tid Arla skulle behöva garantera att kondensatet inte kommer nyttjas av annan aktör för att investeringen ska vara lönsam.

Frågepaket 2: Snabba frågor

I tabellen nedan finns ett antal åtgärder för att minska belastningen på dricksvattenresursen beskrivna, vänligen gör en prioritering av dessa genom att gradera de olika de olika så att de mest troliga får 1 och de minst troliga 5. Kommentera gärna kort varför åtgärden anses mer/mindre trolig.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Prioritera (1 = mest troligt, 5 = minst troligt)</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intern effektivisering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förflytta behov, schemalägg produktion för att minimera negativ inverkan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbios med andra aktörer, tredje part ansvarar för kvalitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbios med andra aktörer, regionen ansvarar för kvalitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbios med andra aktörer, Arla ansvarar för kvalitet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I tabellen nedan finns ett förslag på olika aspekter som är lämpliga för att utvärdera de olika fallen. Vänligen bedöm hur viktiga de olika aspekterna är för respektive grupp, 1 =bidrar inget, 5=bidrar mycket. Det är okej att använda samma siffra flera gånger.

<table>
<thead>
<tr>
<th>Aspekter</th>
<th>Grupp 1</th>
<th>Grupp 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekonomisk, affärsmodellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekniskmognadsgrad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social acceptans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samarbetet mellan olika aktörer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagar och tillstånd begränsar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunders acceptans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vad tycker ni om påståendet? Stryk över med röd om ni inte håller med, grönt om ni håller med.
• Om Regionen renar kondensatet kommer Arla inte kunna presentera det som att de har bidragit till en förbättring.
• Det är viktigtare att öka resiliens/beredskap än att öka effektiviteten.
• Risken för att få biologisk tillväxt är något som behöver undersökas mer.

Frågepaket 3: Projektstruktur

I tabellen nedan finns ett antal frågor som syftar till att utvärdera projektets upplägg.

<table>
<thead>
<tr>
<th>Fråga</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hur upplever du att projektet har varit strukturerat?</td>
<td></td>
</tr>
<tr>
<td>Vad hade ni sett mer av i projektet</td>
<td></td>
</tr>
<tr>
<td>Vad har varit bra?</td>
<td></td>
</tr>
<tr>
<td>Har du förslag på hur data hade kunnat hanteras på ett bättre sätt?</td>
<td></td>
</tr>
<tr>
<td>Kommer ni fortsätta med att ha kontinuerliga träffar med en eller flera av aktörerna i projektet?</td>
<td></td>
</tr>
<tr>
<td>Kommer ni att behöva hjälp för att fortsätta samarbete?</td>
<td></td>
</tr>
<tr>
<td>Vad har varit den största nytta med projektet för er?</td>
<td></td>
</tr>
<tr>
<td>Vad finns kvar att utreda?</td>
<td></td>
</tr>
<tr>
<td>Vad var huvudanledningen till att ni valde att ingå i projektet?</td>
<td></td>
</tr>
</tbody>
</table>

8.3.2 Vimmerby

Frågor kopplat till vattensymbios i Vimmerby

Nedan följer tre frågepaket; (1) inkluderar frågor som är mer utav karaktären ja eller nej och (2) inkluderar frågor kopplat till projektets struktur. (3) frågor till VEMAB kopplat till grundvattenmodellering.

Vi kommer förmodligen även återkomma med några fler frågor kopplat till den ekonomiska bedömningen och de olika fallen som utvärderats efter semestrarna. Under tiden vore det bra om ni kan se över och kommentera de antaganden som har gjorts hitintills, se sista sektionen av dokumentet.

Frågepaket 1: Snabba frågor

I tabellen nedan finns ett antal åtgärder för att minska belastningen på dricksvattenresursen beskrivna, vänligen gör en prioritering av dessa genom att gradera de olika de olika så att de mest troliga får 1 och de minst troliga 5. Kommentera gärna kort varför åtgärden anses mer/mindre trolig.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Prioritera (1 = mest troligt, 5 = minst troligt)</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intern effektivisering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenario | Prioritera (1 = mest troligt, 5 = minst troligt) | Kommentar
--- | --- | ---
Förflytta behov, schemalägg produktion för att minimera negativ inverkan. | |
Symbios med andra aktörer, tredje part ansvarar för kvalitet | |
Symbios med andra aktörer, regionen ansvarar för kvalitet | |
Symbios med andra aktörer, Arla ansvarar för kvalitet | |

I tabellen nedan finns ett förslag på olika aspekter som är lämpliga för att utvärdera de olika fallen. Vänligen bedöm hur viktiga de olika aspekterna är för fall 3 och 4 (se figuren under tabellen), 1 =bidrar inget, 5=bidrar mycket. Det är okej att använda samma siffra flera gånger.

<table>
<thead>
<tr>
<th>Aspekter</th>
<th>Fall 3</th>
<th>Fall 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekonomisk, affärsmodellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekniskmognadsgrad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social acceptans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samarbetet mellan olika aktörer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagar och tillstånd begränsar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunders acceptans</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beskrivning

<table>
<thead>
<tr>
<th>Fall 1 - Referens</th>
<th>Fall 3 - Arla minimerar behovet av kommunalt dricksvatten, genom infiltration till och uttag från grundvattnet</th>
<th>Fall 5 - Arla minimerar behovet av dricksvatten genom att rena med ultrafilter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2 - Arla minimerar behovet av kommunalt dricksvatten, genom att rena kondensatet med (befintligt membran) + RO membran</td>
<td>Fall 4 - Arla minimerar behovet av kommunalt dricksvatten, genom att rena kondensat med (befintligt membran) + RO membran + polering</td>
<td>Fall 6 – Åbro minimerar behovet av kommunalt dricksvatten, genom infiltration av Arla kondensat, rena med RO + polering</td>
</tr>
</tbody>
</table>

Vad tycker ni om påståendet? Stryk över med röd om ni inte inte med håller, grönt om ni håller med.

- Det är viktigare att öka resiliens/ beredskap än att öka effektiviteten.
- Risken för att får biologisk tillväxt är något som behöver undersökas mer.
- Risken att infiltrera kondensat mer riskfyllt än att infiltrera ytvatten från sjöar i området.
- Risken att infiltrera kondensat mer riskfyllt än att infiltrera ytvatten från Stångån.

Frågepaket 2: Projektstruktur

This work is licensed under CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/]
I tabellen nedan finns ett antal frågor som syftar till att utvärdera projektets upplägg.

<table>
<thead>
<tr>
<th>Fråga</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hur upplever du att projektet har varit strukturerat?</td>
<td></td>
</tr>
<tr>
<td>Vad hade ni sett mer av i projektet</td>
<td></td>
</tr>
<tr>
<td>Vad har varit bra?</td>
<td></td>
</tr>
<tr>
<td>Har du förslag på hur data hade kunnat hanteras på ett bättre sätt?</td>
<td></td>
</tr>
<tr>
<td>Kommer ni fortsätta med att ha kontinuerliga träffar med en eller flera av aktörerna i projektet?</td>
<td></td>
</tr>
<tr>
<td>Kommer ni att behöva hjälp för att fortsätta samarbeta?</td>
<td></td>
</tr>
<tr>
<td>Vad har varit den största nytta med projektet för er?</td>
<td></td>
</tr>
<tr>
<td>Vad finns kvar att utreda?</td>
<td></td>
</tr>
<tr>
<td>Vad var huvudanledningen till att ni valde att ingå i projektet?</td>
<td></td>
</tr>
</tbody>
</table>

Frågepaket 3: Databehov för modellering av grundvattennivåer

- Lista över kommunala brunnar, inklusive koordinater, typ av brunn (grävd/borrad), anläggningsdatum, brunnsdjup, brunnsdiameter, uppskattad kapacitet, eventuell dokumentation
- Resultat från provpumpningar av listade kommunala brunnar
- Uppmätta grundvattennivåer i listade kommunala brunnar (tidsserier)
- Pumpdata från listade kommunala brunnar (tidsserier)
Through our international collaboration programmes with academia, industry, and the public sector, we ensure the competitiveness of the Swedish business community on an international level and contribute to a sustainable society. Our 2,800 employees support and promote all manner of innovative processes, and our roughly 100 testbeds and demonstration facilities are instrumental in developing the future-proofing of products, technologies, and services. RISE Research Institutes of Sweden is fully owned by the Swedish state.

I internationell samverkan med akademi, näringsliv och offentlig sektor bidrar vi till ett konkurrenskraftigt näringsliv och ett hållbart samhälle. RISE 2 800 medarbetare driver och stöder alla typer av innovationsprocesser. Vi erbjuder ett 100-tal test- och demonstrationsmiljöer för framtidssäkra produkter, tekniker och tjänster. RISE Research Institutes of Sweden ägs av svenska staten.