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Sammanfattning (max 2000 tecken inklusive mellanslag) 
Dammexplosioner är ett konstant hot mot de svenska industrier som hanterar material eller utför 

processer som skapar brännbart damm, såsom pelletstillverkare, livsmedelsindustri, metallindustri m.m. 

Det aktuella projektet syftar till att (i) utveckla välvaliderade numeriska modeller som kan ta hänsyn till 

de viktigaste förbränningsfenomenen, (ii) utveckla ett numeriskt verktyg baserat på en öppen källkod, 

och (iii) beräkna verkliga dammexplosionsscenarier i samråd med representanter för berörda industrier. 

Projektresultatet kan fylla kunskapsluckorna när det gäller förståelse för dammexplosioner, att uppskatta 

konsekvenser av dammexplosioner, ge rekommendationer för bättre konstruktion av byggnader och 

relevanta säkerhetssystem, och därmed ge personalen en säkrare arbetsmiljö. 

Under det första året, har den öppna källkodsplattformen OpenFOAM installerats och testats. Den 

så kallade FSC (Flame Speed Closure) modellen för förblandade turbulenta flammor implementerades 

i OpenFOAM. Implementeringen av FSC-modellen har verifierats mot analytiska lösningar för 1-D 

plana och 3-D sfäriska förblandade turbulenta flammor. Verifikation av implementationen visar att 

modellen implementerades korrekt. För närvarande är den numeriska modellen under validering mot 

småskaliga experimentella resultat för 3-D sfäriska flamma i Leeds förbränningskärl. De första 

beräkningarna visar att modellen och koden predikterar trenden. Det vill säga, flamhastigheter ökar när 

turbulenta hastighetsfluktuationer ökar. Beräkningar visar också att modellen och koden även 

kvantitativt predikterar flamhastigheter om rimliga modelleringsparametrar används.  

I nästa steg, kommer modellen och koden utvecklas ytterligare för att ta hänsyn till värmeförluster 

och strålning. Därefter kommer beräkningsresultaten att jämföras med experimentella resultat från de 

storskaliga tryckavlastningsförsöken, med olika geometrier, utförda vid Rembe® Research and 

Technology Center. 

 

Abstract  
Dust explosion is a constant threat to the Swedish industries which deal with combustible powders such 

as pellets producers, food industry, metal industry and so on. This project aims at (i) development of 

high-fidelity and well-validated models which address important combustion phenomena during a dust 

explosion, (ii) development of an efficient numerical tool based on an open source toolbox for predicting 

consequences of dust explosions and (iii) simulation of dust explosions in scenarios of process industries 

in cooperation with the reference group members of this project. The project result will improve the 

understanding of complicated combustion phenomena associated with dust explosions, and it will help 

the process industries in designing better vent system in case of dust explosion. 

During the first year, the Flame Speed Closure (FSC) model for premixed turbulent combustion, has 

been implemented in the open source platform OpenFOAM, which was installed at RISE in the 

beginning of the project. The implementation of FSC model has been verified against analytical 

solutions for 1-D planar and 3-D spherical turbulent flames. Verification shows correct implementation 

of model in the OpenFOAM platform. Currently, the developed code is being validated against small-

scale dust-explosion experiments performed using the well-known Leeds combustion vessel. The first 

test of the code show that the trend, i.e. an increase in turbulent velocity fluctuation, an increase in flame 

speed, is predicted by the code. A further test shows that the code and model can predict the flame speed 

quantitatively using proper model parameters.  

In the next step, the model and code will be developed for considering the heat losses and radiation. 

Later the developed numerical platform will be applied to unsteady 3-D RANS simulations of large-

scale experiments performed at REMBE® Research and Technology Center for vent relieving with 

different vent geometry. 
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Nomenclature 

Roman symbols 

𝐴 a constant of the Flame Speed Closure model [-] 

𝑏 combustion regress variable [-] 

𝑐 combustion progress variable [-] 

𝐶𝑑 coefficient for evaluating turbulent length scale [-] 

𝐶𝜇 standard 𝑘 − 𝜀 turbulence model constant [-],𝐶𝜇=0.09 

𝐶1 standard 𝑘 − 𝜀 turbulence model constant [-],𝐶1=1.44 

𝐶2 standard 𝑘 − 𝜀 turbulence model constant [-],𝐶2=1.92 

𝐷𝑡 turbulent heat diffusivity [m2/s] 

𝐷𝑎 = 𝜏𝑡 𝜏𝑐 ⁄  Damköhler number [-] 

𝑘 = 3 2⁄ 𝑢′2 turbulent kinetic energy [m2/s2] 

𝐿 integral length scale of turbulence [m] 

𝑝 pressure [Pa] 

𝑃𝑟 Prandtl number [-] 

𝑅0 = 8.314 universal gas constant [J/(mole·K)] 

𝑅𝑒 turbulent Reynolds number [-] 

𝑅𝑓 flame position [m] 

𝑄 extra source term (see Eq. (Appendix II.2)) 

𝑆 flame speed [m/s] 

𝑇 temperature [K] 

𝑡 time [s] 

𝑡𝑓𝑑 flame development time [s] 

𝑡𝑟 reaction time scale [s] (see Equation (Appendix II.2)) 

𝑡0 ignition model parameter [s] corresponding to ignition duration (see Eq. 

(Appendix II.3)) 

𝑈 burning velocity [m/s] 

𝐮 flow velocity vector [m/s] 

𝑢′ rms turbulent velocity [m/s] 

𝑊 molecular weight [kg/mol] 

𝑊𝑖𝑔𝑛 ignition source term (see Eq. (Appendix II.3)) 

𝑊0 ignition model parameter (see Eq. (Appendix II.3)) 

𝑥 spatial coordinate [m] 

  

 

Greek symbols 

𝛼 molecular heat conductivity [kg/(m·s)] 

∆𝑡 mean flame brush thickness [m] 

𝜀 turbulent dissipation rate [m2/s3] 

𝜙 equivalence ratio [-] 

𝜅 molecular heat diffusivity [m2/s] 

𝜇 molecular dynamic viscosity [kg/(m·s)] 

𝜈 molecular kinematic viscosity [m2/s] 

𝜉 normalized distance [-] 

𝛩 activation temperature [K] 

𝜎 density ratio [-] 𝜎 = 𝜌𝑢 𝜌𝑏 = (𝑇𝑏𝑊𝑢) (𝑇𝑢𝑊𝑏)⁄⁄  

𝜎𝑟 ignition model parameter [m] corresponding to ignition kernel size (see 

Eq. (Appendix II.3)) 

𝜎𝑘 standard 𝑘 − 𝜀 turbulence model constant [-], 𝜎𝑘=1.0 

𝜎𝜀 standard 𝑘 − 𝜀 turbulence model constant [-], 𝜎𝜀=1.3 

𝜎𝑡 ignition model parameter [s] 𝜎𝑡 = 𝑡0/5. (see Eq. (Appendix II.3)) 

𝜌 density [kg/m3] 

𝜏𝑐 chemical time scale [s] 

𝜏𝑡 turbulent time scale [s] 
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Subscripts 

𝑏 combustion products 

𝑓 flame  

𝐿 laminar 

𝑡 turbulent 

𝑢 unburned mixture 

0 initial condition 

∞ fully developed, asymptotically steady quantities 

 

Superscripts 

− ensemble-averaged or Reynolds-averaged 

~ Favre-averaged 

 

Acronyms 

1-D 1-dimensional 

3-D 3-dimensional 

BML Bray-Moss-Libby 

CFD Computational Fluid Dynamics 

CPU Central Processing Unit 

FSC Flame Speed Closure 

GPL General Public License 

LHS Left Hand Side 

OpenFOAM Open Field Operation and Manipulation 

RAM Random Access Memory 

RANS Reynolds-averaged Navier–Stokes 

RHS Right Hand Side 

rms root-mean-square 
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1. Project aim and expected result 

Dust explosion is a great threat to the industry worldwide especially among countries and regions with 

high industrial output. Also, in Sweden dust explosion represents a constant threat to the working 

environment of industries which deal with combustible powders. There is at least one dust explosion 

accident reported to Arbetsmiljöverket per month [1], and it is highly possible that there are many more 

unreported accidents available. Some examples from 2017 are  

• an explosion of a truck loaded a 20-meter diameter silo with pellets in Gothenburg on 7th March 

[2],  

• a metal dust explosion in an aluminium pigment company in Huskvarna on 28th March [3],  

• a severe explosion occurred during cleaning of a dust extractor in Trångsund [4] on 15th August 

(seven people were injured that time),  

• a dust explosion in a 40-meter-high grain silo in Tråvad on 29th August [5].  

According to Afa-försäkrings statistical analysis, 838 workers were injured severely due to fire, 

explosion, welding etc., during 2012 and 2013 [6]. Nine more dust explosion incidents were reported 

by the media in Sweden during 2018 [7-16], and there is no sign of indicating the declining of dust 

explosion incidents in Sweden.  

After going through the most recent dust explosion incidents in Sweden, the question arises: why 

are there so many dust explosions? We believe that the main reason is the lack of knowledge in the 

complicated combustion process during a dust explosion and the lack of numerical tools for designing 

explosion protection systems. 

So, what exactly is a dust explosion? It is a complicated physical and chemical process, when very 

fine combustible particles well mixed with air in confined equipment are ignited, resulting in violent 

and explosive burning. Once the dust explosion occurs, the high-pressure waves, hot flames and 

extremely radiative heat may cause serious loss of life and severe economic consequences. 

The next question will be: how could we reduce the consequences of dust explosions? One important 

solution would be having access to high-fidelity and well-validated models and an efficient numerical 

tool. Specifically, the numerical tool can be used to design explosion venting protecting systems for 

process plants with complicated geometries where the standards are not applicable.  

A suitable platform for developing dust explosion models is the code OpenFOAM (Open Field 

Operation and Manipulation). It is a free, open-source general-purpose Computational Fluid Dynamics 

(CFD) software package mainly for simulating thermodynamics, fluid dynamics, and chemical 

reactions. On the technical side, OpenFOAM excels in modern architecture using object-orientated 

programming language, high parallelization and unstructured grid for dealing with curved geometry. 

New models and methods can be easily implemented and tested thanks to the open source. Furthermore, 

it creates more value for the customer since it is possible to create the tailor-made tool that suits the 

special need of the customer at zero license cost. 

For the above reasons, this project aims at (i) improving the understanding of complicated 

combustion phenomena associated with dust explosions such as flame expansion, turbulence generation 

by a flame and flame acceleration, (ii) providing an OpenFOAM-based numerical tool for accurately 

estimating the consequence of dust explosions, (iii) helping the relevant industries to develop mitigation 

strategies such as better pressure relief system for reducing dust explosion consequences. 

The expected project result will be a numerical tool based on the open source code with detailed 

documentation for designing safer explosion venting system at industrial plants. In the long-term 

perspective, the number of severe accidents caused by dust explosion is expected to be reduced due to 

safer and more efficient pressure relief systems for reducing dangerous pressure build-up in case of dust 

explosions. 
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2. Project progress 

First, the OpenFAOM software was installed from scratch on RISE computer with Linux operation 

system.  

Second, a model of turbulent burning of a dust cloud was implemented into the OpenFOAM 

platform.  

Third, the implementation was verified by comparing the computed results with exact and 

approximate analytical solutions obtained for 1-D laminar flame and statistically planar or spherical 

flame propagating in “frozen” turbulence. “Frozen” means that turbulence characteristics such as 

turbulent kinetic energy and turbulent dissipation rate are kept constant throughout the simulation. In 

other words, the influence of combustion on turbulence is ignored. Such a simplification is required to 

find analytical solutions [17] to the aforementioned problems, thus, allowing direct quantitative 

verification of the model implementation. 

Fourth, different versions of the model were studied for 1-D and 3-D laminar and turbulent flames. 

Sensitivity of computed results to constants of ignition, combustion, and turbulence models was studied. 

A reasonable set of the models’ constants was selected for studying dust cloud explosion at the next step 

of project. 

If no special statement is made, the following software and hardware is used in this project: 

OpenFOAM version 1812 and a RISE computer called “srv-simlab-02” with 128 GB RAM and totally 

28 Xeon Gold cores. 

2.1. Brief introduction of OpenFOAM 

OpenFOAM (Open Field Operation and Manipulation) code is a free, open source general CFD software 

package for simulating thermodynamics, fluid dynamics, chemical reactions, solid dynamics and 

electromagnetics. The code solves various partial differential equations using finite volume method on 

unstructured mesh. OpenFOAM is licensed under GNU General Public License (GPL) v3 which means 

users have great freedom in using the code. More specifically, users are free to use the software for any 

purpose (commercial or non-commercial); users are free to make change to the software; users are free 

to share the software with the changes they have made.  

OpenFOAM has been attracting growing interests from both industries and academies since its 

release in 2004. Researchers are strongly interested in access to source codes in order to develop and to 

implement new models and to easily exchange knowledge and experience with each other. Moreover, 

OpenFOAM has a very attractive feature; it is written in object-oriented language C++. Accordingly, 

solvers, written using the OpenFOAM classes, closely resemble the corresponding partial differential 

equations. Furthermore, OpenFOAM has inbuilt parallelization. That means parallelization is integrated 

at a low level, e.g. new application does not need parallel-specific coding since it runs in parallel by 

default. However, besides the abovementioned advantages of OpenFOAM, since simple documentations 

are commonly embedded in the source code, the learning curve of OpenFOAM is steeper than a well-

documented program, e.g. Ansys Fluent. 

The overall OpenFOAM structure is shown in Figure 1. The workflow of using OpenFOAM is like 

a conventional CFD program, and it includes pre-processing, solving and post-processing. First, 

OpenFOAM has its own mesh generation utilities, such as blockMesh, snappyHexMesh and cfmesh.  

Such meshing utilities have limitations of either for simple geometry or less user-friendly, which restrict 

the usage of OpenFOAM in industrial applications with complicated geometry. However, OpenFOAM 

mesh is compatible with the mesh format of most common commercial CFD programs. After the 

computational mesh is ready, there are various kinds of solvers designed to solve specific computational 

continuum mechanics. OpenFOAM offers a set of libraries which are dynamically linked to the solvers, 

and the libraries serve as the source code of physical models. Finally, post-processing of computed 

results especially for data visualization can be achieved using both an open source program ParaView, 

and commercial programs, e.g. EnSight and Tecplot. Moreover, there are utilities for data acquisition as 

well. 

OpenFOAM is available for the Linux, Mac and Windows operating system. Currently the owner 

of OpenFOAM - ESI releases both source code and pre-compiled binaries for Linux, Mac and Windows 

system, and users can freely download the source code from the internet. Usually compilation of 

OpenFOAM from source code requires knowledge of Linux operation system and capability to work in 
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terminals using commands. Moreover, the installation of ParaView, which is an open source data 

visualization application released together with OpenFOAM, is available for both Linux and Windows 

operation systems. 

 
Figure 1 Overview of OpenFOAM structure. 

2.2. Model for turbulent burning of dust cloud 

The dust explosion process resembles that of a turbulent burning of a gas cloud. This is especially true 

for very fine organic dust particles with high volatile content [18-20]. Therefore, a premixed turbulent 

combustion model is commonly used for modelling of dust explosions [21]. In this work, we start with 

a so-called Flame Speed Closure (FSC) model of the influence of turbulence on premixed  burning [22]. 

The main reason is that the FSC model has been quantitatively validated against a wide set of 

experimental data obtained by various research groups from various flames under a wide range of 

substantially different conditions (various fuels, equivalence ratios, temperatures, pressures, and 

turbulence characteristics) [22, 23].  

The FSC model characterizes the state of the mixture in a flame using a single combustion progress 

variable 𝑐, where combustion progress variable has a physical meaning of the probability of finding 

burned products. A detailed description of the FSC model is reported in Appendix I. 

2.3. Model implementation into OpenFOAM 

One of the biggest advantages of using OpenFOAM is that users have access to the source code and 

have possibility to implement and to test new models. Moreover, OpenFOAM is written in object-

oriented language. Accordingly, coding a balance equation is straightforward. A solver developed within 

the framework of the present project is based on the solver XiFoam available in OpenFOAM. Following 

XiFoam, the developed solver deals with a transport equation for the Favre-averaged regress variable �̃�, 

which is equal to 1 − �̃�. Based on the FSC model, the equation is written as follows 

𝜕�̅��̃�

𝜕𝑡⏟
1

+ 𝛻. (�̅��̃��̃�)⏟    
2

−𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�]⏟            
3

+ 𝜌𝑢𝑈𝑡|𝛻�̃�|⏟      
4

 

+
�̅��̃�

𝑡𝑟(1 + 𝐷𝑡 𝜅𝑏⁄ )
exp (−

Θ

�̃�
)

⏟                
5

+ �̅�𝑊0exp{− [(
𝑟

𝜎𝑟
)
2

+ (
𝑡 − 𝑡0
𝜎𝑡

)
2

]} �̃�
⏟                      

6

= 0, 

(1) 

where terms 1-5 pertain to the FSC model, whereas term 6 is used to ignite the mixture. This source 

term is active during a short time interval on the order of 𝜎𝑡 and creates a small flame kernel whose 

radius is on the order of 𝜎𝑟. Overlines denote the Reynolds average (𝑞 = �̅� + 𝑞′), while �̃� = 𝜌𝑞̅̅̅̅ �̅�⁄  is the 

Favre-averaged value of 𝑞 (𝑞 = �̃� + 𝑞′′). The derivation of regress variable equation by using progress 

variable equation to is reported in Appendix II. 

Equation (1) written in the object-orientated language in OpenFOAM is shown below 
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   // Create b equation 
    // ~~~~~~~~~~~~~~~~ 
    fvScalarMatrix bEqn 
    ( 
        fvm::ddt(rho, b)                                               // term 1: transient 
      + mvConvection->fvmDiv(phi, b)                    // term 2: convection 
      - fvm::laplacian(alpha_turb_transient+alpha_thermo, b)   // term 3: diffusion 
      + fvm::div(phiSt, b)                                           // term 4: gradient 
      - fvm::Sp(fvc::div(phiSt), b)                              // term 4: gradient 
      + fvm::SuSp(rho*W_0*W_ign_coeff,b)         // term 5: ignition, depending on the sign 
      + fvm::SuSp(rho/tr/(1.+alpha_turb_transient/alphab_thermo)*exp(-Ta/thermo.T()),b)// term 6: 
extra source term  
     == 
        fvOptions(rho, b) 
    ); 

In the default library of OpenFOAM, the calculation of Favre-averaged temperature �̃� and 

Reynolds-averaged density �̅� does not follow the well-established Bray-Moss-Libby (BML) framework 

[24], as discussed in detail in Refs. [23, 25]. This limitation of the OpenFOAM library leads to incorrect 

solution in the flame brush zone, and it may lead to error message of “out of temperature range 200 -> 
5000” when running the code. 

In the present work, the calculation of �̃� and �̅� follows the BML framework, i.e. 

�̃� = 𝑇𝑢�̃� + 𝑇𝑏(1 − �̃�) (2) 

1

�̅�
=
1

𝜌𝑢
�̃� +

1

𝜌𝑏
(1 − �̃�) (3) 

Equations (2) and (3) are implemented by modifying the calculate() function in the library located 

in 

$FOAM_USER_SRC/thermophysicalModels/reactionThermo/psiuReactionThermo/heheuPsiThermo.C. 
The detailed implementation of solver and library is reported in Appendix V.  

The laminar and turbulent viscosity and heat diffusivity used by the model, e.g. 𝜅 and 𝐷𝑡 in Equation 

(1), are reported in Appendix VI. 

2.4. Verification of model implementation 

To verify the implementation of the model into OpenFOAM, three sets of analytical solutions to 

simplified versions of Equation (1) were used. These were: 

1. the classical approximate travelling-wave solution to planar 1-D Equation (1) obtained by 

Zel’dovich and Frank-Kamenetskii [26] in the case of a laminar flame (𝐷𝑡 = 0; 𝑈𝑡 = 0;𝑊0 = 0). 

2. an exact analytical solution to planar 1-D Equation (1) without terms 5 and 6 (i.e. 𝑡𝑟 → ∞ and 𝑊0 =
0), derived in Ref. [17] in the case of frozen turbulence (neither 𝐷𝑡, nor 𝑈𝑡 varies in space).  

3. an approximate analytical solution to spherically symmetrical 1-D Equation (1) without terms 5 and 

6 (i.e. 𝑡𝑟 → ∞ and 𝑊0 = 0), derived in Ref. [27] in the case of frozen turbulence (neither 𝐷𝑡, nor 𝑈𝑡 
varies in space). 

These solutions are discussed in Appendix III. 
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3. Achieved results up to now 

3.1. Verification of model implementation 

In order to verify the implementation of premixed turbulent combustion model in OpenFOAM, we 

simulated simplified cases where benchmark analytical solution could be obtained, e.g. 1-D planar 

laminar premixed flame, 1-D planar flame propagating in “frozen” turbulence, and 3-D spherical flame 

propagating in “frozen” turbulence. Subsequently, results computed using the newly implemented 

models were compared with the analytical solutions. It is worth remembering that simulations of the 

turbulent flames were performed using the truncated FSC model, i.e. terms 5 and 6 were omitted in 

Equation (1), because the analytical solutions had been obtained for that truncated transport equation. 

The implementation of the FSC model was verified using three options, i.e. (i) comparison of the 

normalized profile of the Reynolds-averaged progress variable 𝑐̅ with the analytical solution given by 

Equation (Appendix III.1), (ii) comparison of the computed growth of the mean flame brush thickness 

with the turbulent diffusion law given by Equation (Appendix III.4), and (iii) comparison of the 

computed flame speed with the turbulent flame speed yielded by the FSC model expressions given by 

Equation (Appendix I.3) in the planar case or Equation (Appendix III.5) in the spherical case. 

The premixed burning of cornflour dust cloud was simulated. The cornflour chemical equivalent 

formula is C6H7.88O4.98 with a heat of reaction being 15.8 MJ/kg [18]. The chemical reaction of cornflour 

is as follows 

C6H7.88O4.98 + 5.48 (O2 + 3.71 N2) = 6CO2 + 3.94H2O + 20.331 N2 

 

3.1.1. Truncated FSC model: 1-D planar flame in “frozen” turbulence  

The 1-D model has a domain size of 0.1 m, and a cross section size of 0.003 × 0.003 m, Figure 2. There 

are 100 cells along the x direction, and three cells in the y and z directions, respectively. Burned products 

occupy the left-hand side (LHS), whereas unburned reactants occupy the right-hand side (RHS). Zero 

velocity and free entrainment boundary conditions are set on the right (unburned) and the left (burned) 

boundaries, respectively. In the latter case, the pressure at the boundary for compressible subsonic flow 

is calculated using the following equation 

𝑝𝑝 = 𝑝0 −
1

2
𝜌|�̃�|2 (4) 

where 𝑝𝑝 is the pressure at the boundary patch, and 𝑝0 is the total pressure. 

 
Figure 2 Layout of 1-D planar flame. 

The premixed turbulent flame propagates from burned to unburned side. The thermo-physical 

properties of unburned and burned mixture, the initial and boundary conditions are summarized in Table 

1, Table 2 and Table 3, respectively. The case setup is shown in Appendix VII. 
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Table 1 Thermo-physical properties of unburned and burned mixtures. 

quantities value 

unburned 𝑇𝑢 [K] 328 

𝑊𝑢 [g/mol] 32.76 

𝜌𝑢 [kg/m3] 1.32138 

𝜇𝑢 [kg/(m·s)] 1.8e-5 

burned 𝑇𝑏 [K] 1599 

𝑊𝑏 [g/mol] 27.15 

𝜌𝑏 [kg/m3] 0.2255 

𝜇𝑏 [kg/(m·s)] 4.6e-5 

others 𝜎 = 𝜌𝑢 𝜌𝑏 = (𝑇𝑏𝑊𝑢) (𝑇𝑢𝑊𝑏)⁄⁄  [-] 5.86 

𝑃𝑟𝑡 0.7 

𝑆𝐿 [m/s] 0.12 

Table 2 Initial conditions for 1-D planar flame. 

quantities value 

𝑇0 [K] 328 

𝑃0 [Pa] 11 000 

�̃� [m2/s2] 0.96 

𝑢′ [m/s] 0.8 

Table 3 Different turbulent length scales 

cases 1 2 3 

𝜀̃ [m2/s3] 11.84 69.6 348 

𝐿 [m] 0.029 0.005 0.001 

Table 4 Boundary conditions for x direction. 

 burned (left) unburned (right) 

𝑃 [Pa] totalPressure  fixedValue  11 0000 

�̃� [m/s] pressureInletOutletVelocity  fixedValue (0 0 0) 

�̃� [K] zeroGradient fixedValue 328  

�̃� [-] zeroGradient fixedvalue 1 

The calculated profiles of the Reynolds-averaged combustion progress variable 𝑐̅ versus distance 

change with time; see  Figure 3 (a). However, the profile of 𝑐̅ versus normalized distance 𝜉 is the same 

for all the time instances, in line with the well-documented self-similarity of premixed flames [17]. It 

can be seen in Figure 3 (b) that the profiles of  𝑐̅ versus 𝜉 for different time instants and the analytical 

solution (see Equation (13) in Ref. [17]) agree very well. 

 
(a), Reynolds-averaged combustion progress variable 𝑐̅ vs distance   (b), 𝑐̅ vs normalized distance 

Figure 3 Spatial profiles of the Reynolds-averaged combustion progress variable for 1-D planar flame 

propagating in “frozen” turbulence. 

Comparison between calculated and analytical flame speeds is shown in Figure 4. In the simulations, 
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the flame speed was evaluated by taking derivative of mean flame position against time. The mean flame 

position is defined by the x-coordinate of a surface 𝑐̅ = 0.5. Since the calculated flame position exhibited 

fluctuations, UnivariateSpline function in scipy library of Python was used to smooth the data. Figure 4 

shows that the numerical and analytical results agree well. There is a slight discrepancy in the beginning 

and in the end of the curve. This may be caused by the smoothing function and the uncertainty caused 

by the numerical schemes, time-step and grid size.  

 
Figure 4 Comparison of calculated flame speed with flame speed yielded by FSC model for 1-D 

planar flame propagating in “frozen” turbulence. 

Comparison between mean flame brush thickness evaluated by processing the computed profiles of 

𝑐̅(𝑥, 𝑡) using Equation (Appendix III.3) and the analytical solution given by Equation (Appendix III.4) 

is shown in Figure 5. Overlapping of solid and dashed lines verifies the implementation of the FSC 

model. 

 
Figure 5 Comparison of calculated mean flame brush thickness ∆𝑡 with turbulent diffusion law given 

by Eq. (Appendix III.4) for 1-D planar flame propagating in “frozen” turbulence. 

3.1.2. Truncated FSC model: 3-D spherical flame in “frozen” turbulence 

A cube geometry was created in order to represent one eighth of the total computational domain. The 

computational domain had an edge of 60 mm and a mesh size of 0.25 mm. Totally 13 824 000 cells were 

created. The model took around 42 wall clock hours running on Simlab computer using 14 cores. The 

initial condition corresponded to a spherical kernel of a radius of 20 mm, filled with combustion 

products. The rest of the domain was filled with unburned mixture. The detailed case setup is shown in 

Appendix VIII. The initial conditions, boundary conditions, and thermos-physical properties were the 

same as for 1-D planar case; see Table 1, Table 2 and Table 3. To perform comparison with approximate 

analytical solution, results were obtained using the FSC model without extra source term 𝑄; see Equation 

(Appendix II.1). 

The Reynolds-averaged progress variable 𝑐̅  was evaluated by taking the average value of 𝑐̅  along 

x, y and z directions. The computed dependencies of 𝑐̅ on the normalized distance 𝜉 are overlapping and 

agree well with the complementary error function; see Figure 6 (b).  
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(a), Reynolds-averaged combustion progress variable 𝑐̅ vs distance   (b), 𝑐̅ vs normalized distance 

Figure 6 Spatial profiles of the Reynolds-averaged combustion progress variable for 3-D spherical 

flame propagating in “frozen” turbulence. 

For an expanding spherical flame, the burning velocity is lower than that of a planar due to the 

influence of the mean curvature of the flame brush. The FSC model permits an analytical estimate of 

the magnitude of such a reduction effect. As shown elsewhere [28], the effect magnitude is equal to 

∫ �̃�𝑟𝑑𝑟
∞

0
{∫ 𝑐̅𝑟𝑑𝑟
∞

0
}
−1

. To verify the implementation, a ratio of the computed turbulent flame speed 𝑆𝑡 

(with respect to unburned mixture) and the theoretical turbulent burning velocity 𝑆𝑡 given by Equation 

(Appendix I.3) was compared with the integral ratio calculated using the analytical solution given by 

Equation (Appendix III.1). To do so, (i) 𝑆𝑡 was calculated by differentiating filtered curve plotted in 

Figure 7 and (ii) since the complementary error function in this solution involved a normalized distance, 

the integrals of ∫ �̃�𝑟𝑑𝑟
∞

0
 and ∫ 𝑐̅𝑟𝑑𝑟

∞

0
 were also evaluated using the normalized distance, e.g. 

 
Figure 7 Calculated flame position (original and filtered) versus time for 3-D spherical flame 

propagating in “frozen” turbulence. 

As shown in Figure 8, the two ratios, i.e. ∫ �̃�𝑟𝑑𝑟
∞

0
{∫ 𝑐̅𝑟𝑑𝑟
∞

0
}
−1

 and 𝑆𝑡 𝑈𝑡⁄ , are sufficiently close to 

one another, thus, further verifying the model implementation. The quantities are not exactly equal, 

because the analytical estimate of the reduction effect magnitude is an approximate one for the 3-D 

spherical flame. 
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Figure 8 Comparison of analytical integral ratio with the ratio of calculated flame speed with respect 

to unburned mixture divided by theoretical turbulent flame speed by Equation (Appendix I.3)  for 3-D 

spherical flame propagating in “frozen” turbulence. 

Since the complementary error function is evaluated based on a normalized distance, the integration 

∫ �̃�𝑟𝑑𝑟
∞

0
 should also be evaluated using the same normalized distance, i.e. 

∫ �̃�𝑟𝑑𝑟
∞

0

= ∆𝑡∫ �̃�(∆𝑡𝜉 + 𝑟𝑓)𝑑𝜉
∞

−
𝑟𝑓
∆𝑡

 (5) 

where 𝜉 =
𝑟−𝑟𝑓

∆𝑡
, and 𝑑𝑟 = ∆𝑡𝑑𝜉. 

Figure 9 shows that analytical and numerical results for the mean flame brush thickness are close to 

each other. It is worth stressing that, contrary to the 1-D planar case discussed earlier, the analytical 

equation is not exact and, consequently, some mild differences between this equation and numerical 

data are expected.  

 
Figure 9 Comparison of calculated mean flame brush thickness with Eq. (Appendix III.4) for 3-D 

spherical flame propagating in “frozen” turbulence. 

3.1.3. Truncated FSC model: Influence of ignition model 

Results reported in the previous section were obtained by omitting term 5 in Equation (1) (otherwise an 

analytical benchmark solution is difficult to obtain) and using 𝑊0 = 0 in term 6, with ignition being 

simulated by creating a product kernel at the initial instant. Alternatively, ignition could be simulated 

using uniform initial conditions of �̃�(𝐱, 𝑡 = 0) = 1 and a large value of 𝑊0. Results of such simulations 

are discussed in the present subsection. 

Black dashed line in Figure 10 shows that the use of the latter ignition model yields too small mean 

flame brush thickness for the turbulent length scale of 5 mm. Examination of the numerical data 

indicated that the computed thickness was too small, because the gradient |∇𝑐̅| was too much in the 

vicinity of the kernel centre. This problem was solved by using the complete version of the FSC model, 

i.e. by retaining term 5 in Equation (1). Relevant results will be reported in sections 3.1.4 and 3.1.5. 
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Figure 10 Comparison of calculated mean flame brush thickness against turbulent diffusion law in Eq. 

(Appendix III.4) for turbulent length scale 1, and 5 mm for 3-D “frozen” turbulence spherical flame. 

3.1.4. Complete FSC model: 1-D laminar planar flame 

To verify implementation of the complete FSC model, we still have to verify implementation of term 5 

in Equation (1). To do so, 1-D planar laminar flame was simulated, because this term is of the most 

importance under such conditions. Indeed, when turbulent Reynolds number 𝑅𝑒𝑡 is increased so that 

𝑅𝑒𝑡 ≫ 1, the magnitude of this term is significantly reduced due to a ratio of 𝐷𝑡 𝜅𝑏⁄ ∝ 𝑅𝑒𝑡 in the 

denominator. Another goal of such simulations was to find out a value of the reaction time scale 𝑡𝑟 that 

yielded the required value of the laminar flame speed 𝑆𝐿 = 0.12 m/s.  

    The cornflour laminar flame thickness 𝛿𝐿 is evaluated as follows 

𝛿𝐿 =
𝜅𝑢
𝑆𝐿
=

𝜇𝑢
𝑃𝑟𝜌𝑢𝑆𝐿

. (6) 

By using the thermos-physical properties of the unburned and burned mixture in Table 1, the 

cornflour laminar flame thickness is estimated to be around 1.6e-4 m. In order to resolve the small 

thickness of the laminar flame, a tube with a mesh size of 2.5e-5 m and a domain of 3e-2×7.5e-5×7.5e-

5 m was constructed. For the first and the last 1e-2 m, a grading mesh with mesh size between 2.5e-5 

and 2.5e-4 m was used. For the middle part of the domain where laminar flame propagates, a uniform 

mesh with size of 2.5e-5m was used. There were 600 grid cells in the x direction and 3 grid cells in the 

y and z directions, respectively, yielding 5400 cells. One numerical run took around 2 h on Simlab 

computer on one core for simulating flame propagation during 1e-2 s with a time step of 1e-7 s. 

The layout of 1-D planar flame is shown in Figure 2, in which the left-hand side (0-1.5e-2 m) is 

filled with burned mixture and the right hand side (1.5e-2 – 3e-2 m) is filled with unburned mixture. 

The boundary conditions for the unburned and burned sides are zero velocity and free entrainment, 

respectively. The initial and boundary conditions for the simulations are shown in Table 2, with the 

initial temperature and pressure being equal to 328 K and 110 000 Pa, respectively. 

The FSC model constant 𝐴 and turbulent heat diffusivity 𝐷𝑡 were set equal to zero, whereas the 

reaction time scale was varied to obtain the required laminar flame speed. According to the classical 

theory by Zeldovich and Frank-Kamenetskii [26], 𝑆𝐿 ∝ 𝑡𝑟
−0.5. The same scaling was obtained in the 

simulation, thus, verifying the model implementation. Under conditions of the present simulations, the 

reaction time scale that yields the laminar flame speed of 0.12 m/s is equal 3.4e-11 s.  

The computed spatial profiles of the progress variable, flame thickness and flame speed are reported 

in Figure 11. As expected, the flame thickness and speed quickly reach steady value. The computed 

fully-developed flame thickness is about 0.66 mm, i.e. significantly larger than  𝛿𝐿 = 0.16 mm yielded 

by Equation (6). The point is that the numerical result was obtained by evaluating the maximum gradient 

of the progress variable and such a method is well known to yield significantly larger value of a laminar 

flame thickness when compared to Equation (6). Typically, a ratio of the two thicknesses is comparable 

with the density ratio. 
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(a), progress variable vs distance                                 (b), mean flame brush thickness vs time 

 
(c), flame speed vs time 

Figure 11 Computed spatial profiles of the progress variable and evolution of thickness and speed of 

1-D planar laminar premixed flame. 𝑡𝑟=3.4e-11 s. 

3.1.5. Complete FSC model: 3-D spherical flame in “frozen” turbulence  

Reported in this section are results of application of the complete FSC model supplemented with the 

ignition source term to unsteady 3-D simulations of 3-D spherically symmetrical premixed flames 

propagating in “frozen” turbulence. The computational domain was a box with a size of 140 mm. 

Grading mesh was used in order to reduce the number of grid sizes. The grid size in the center of the 

domain was 0.25 mm and the mesh size grew with the distance from the center, with the largest mesh 

size being 14.6 mm near the boundary. The use of the grading mesh allowed us to simulate the problem 

on a mesh of 512 000 grid points. The blockMeshDict file for generating mesh is shown in Appendix 

VIII.  In the experiments, which will be discussed in section 3.2, the measured turbulent length scale 

was 20 mm [29], the measured rms turbulent velocity 𝑢′ =0.8 m/s. Accordingly, 𝜀 =17.4 m2/s3 for 

𝐶𝑑 =0.37. The rest of the initial and boundary conditions were the same as in the 1-D planar case 

discussed earlier. The ignition model parameters are: 𝑊0=1e6, 𝜎𝑟=1.5e-3 m, 𝑡0=1e-3 s, 𝜎𝑡 = 𝑡0/5.  

Figure 12 shows that the complete FSC model yields a smaller mean flame brush thickness when 

compared to the analytical solution to the truncated FSC model in 1-D statistically planar case. This 

effect is attributed to term 5, which limits the growth of mean flame brush thickness, as discussed in 

detail elsewhere [22]. The spatial profiles of the Reynolds-averaged combustion progress variable, 

computed at different instants, are shown in Figure 13. It indicates a complete combustion in the centre 

of the flame, where the Reynolds-averaged combustion progress variable is almost equal to unity. 
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Figure 12 Comparison of calculated mean flame brush thickness with the turbulent diffusion law given 

by Eq. (Appendix III.4). 

 
Figure 13 Spatial profiles of the Reynolds-averaged combustion progress variable at different instants 

obtained from 3-D statistically spherical premixed flame propagating in “frozen” turbulence. 

The calculated integral ratio and flame speed are similar to those obtained in the analytical solutions; 

see Figure 14 and Figure 15, respectively.  

 
Figure 14 Comparison of analytical integral ratio and the ratio of calculated flame speed with respect 

to unburned mixture divided by theoretical turbulent flame speed by Equation (Appendix I.3) for 3-D 

statistically spherical premixed flame propagating in “frozen” turbulence. 
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Figure 15 Comparison of analytical and calcualted flame Speed of 3-D statistically spherical 

premixed flame propagating in “frozen” turbulence. 

Figure 16 shows that the size of ignition kernel weakly affects computed flame speed at a later stage 

of turbulent flame development. Accordingly, the use of experimental data obtained from sufficiently 

large flame kernels offers an opportunity to test the FSC model independently of the ignition model. 

 
Figure 16 Influence of the size of ignition kernel on the computed speed of 3-D statistically spherical 

premixed flame propagating in “frozen” turbulence. 

3.1.6. Summary  

Numerical tests discussed in section 3.1, as well as many other numerical tests skipped for brevity, show 

that the developed numerical platform well predicts the mean flame structure, the mean flame brush 

thickness, and the mean flame speed in three benchmark cases: 1-D planar laminar premixed flame, 1-

D statistically planar premixed flame that propagates in “frozen” turbulence, and 3-D statistically 

spherical premixed flame that propagates in “frozen” turbulence. Thus, these tests verify numerical 

implementation of the FSC model into OpenFOAM performed within the framework of the project. 

3.2. Simulations of Leeds experiments 

Experimental data on cornflour dust explosion in the well-known Leeds fan-stirred combustion vessel 

[18] are chosen to begin assessing the model. The experimental setup is illustrated in Figure 17. The 

vessel diameter is equal to 305 mm and a volume of 0.023 m3. The vessel has three pairs of orthogonal 

quartz windows of 150 mm diameter.  

Turbulence is generated by four fans, whose rotation speed can be changed to vary the rms turbulent 

velocity 𝑢′. In the discussed experiments, the fan speed was varied from 8 to 50 Hz, which corresponded 

to variations in 𝑢′ from 0.80 to 5.00 m/s. While the integral length scale was not reported in Ref. [18], 

it was reported in other papers by the Leeds group. In particular, Bradley et al. [29] have stated that the 

longitudinal integral length scale measured using laser Doppler velocimetry was found “to be 20 mm 

and independent of fan speed between 1 000 and 10 000 rpm”, with 1 000 rpm corresponding to 16.5 

Hz. It is worth noting, however, that, in the experiments with the lean dust-air mixture, the lowest fan 
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speed was less than 16.5 Hz and a decrease in 𝐿 at low fan speeds was reported in an earlier paper by 

the Leeds group [30]. However, those data cannot be used here, because they were obtained using 

thermo-anemometry, but such a method performs poorly in flows with zero velocity. For instance, the 

earlier Leeds measurements with thermo-anemometry overestimated 𝐿 at large fan speeds by a factor of 

about two. Thus, in the Leeds experiments with the dust-air mixture, the turbulence length scale of 20 

mm could be overestimated at low fan speeds. Nevertheless, when compared to other experimental data 

on dust explosions, the Leeds measurements were performed under well-defined laboratory conditions, 

i.e. the initial and boundary conditions were well controlled. 

To study dust explosion, a premixed dust-air cloud was ignited by a spark in turbulent medium in 

the centre of the vessel. Subsequently, turbulent flame kernel growth was recorded using high-speed 

Schlieren system. By processing Schlieren images, an equivalent mean flame radius �̅�𝑓, i.e. the radius 

of a circle whose area was equal to the area enveloped by the flame surface on the image, was calculated 

and turbulent flame speed with respect to combustion products was evaluated by differentiating the 

measured �̅�𝑓(𝑡)-curves, i.e. 

𝑆𝑡,𝑏 =
𝑑�̅�𝑓

𝑑𝑡
. (7) 

To avoid an influence of the spark on the speed, measurements were performed in a range of 20 

mm≤ �̅�𝑓(𝑡) ≤35 mm. For such flame kernels, whose radius was less than the vessel radius by a factor 

of about 5, an increase in the pressure in the vessel was negligible. 

In addition to values of 𝑆𝑡,𝑏 obtained at four different �̅�𝑓 and five different fan speeds, reported in 

Ref. [18] are the values of the laminar flame speed 𝑆𝐿 and density ratio 𝜎 for the studied dust-air mixture. 

However, methods and precision of evaluation of these values are not discussed. Furthermore, the value 

of the laminar flame thickness 𝛿𝐿, which is required to calculate an important input parameter of the 

FSC mode such as the chemical time scale 𝜏𝑐 = 𝛿𝐿 𝑆𝐿⁄ , is not reported. Thus, even in the considered 

case of the small-scale well-controlled Leeds experiments, some information important for the model 

validation is missing. This is a typical problem for testing any model of dust explosion. 

To save computational time, one eighth of a cube was simulated, with the cube volume being equal 

to the volume of the vessel. A computational mesh was created with an edge size of 0.14 m. The same 

was also used in the 3-D simulations of flame expansion in “frozen” turbulence, discussed earlier. The 

mesh is shown in Figure 18. One simulation took around 6 h on simlab computer for a simulation 

duration of 10 ms using 2e-6 s timestep. 

The initial conditions are reported in Tables 5 and Table 6. It is worth noting that the measured 

burned temperature of 1500 K [18] is used here instead of the calculated burned temperature of 1592 K, 

because neither the method, nor precision of the calculation is discussed in Ref. [18]. The use of the 

former temperature yields the density ratio of 5.06, whereas  𝜎 =5.49 reported in Ref. [18] corresponds 

to the latter (higher) temperature.  

 
Figure 17 Illustration of Leeds fan stirred bomb. 
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Figure 18 Illustration of computational mesh. 

Table 5 Thermo-physical properties of unburned and burned mixture of equivalence ratio 0.77. 

Parameters value 

unburned 𝑇𝑢 [K] 328 

𝑊𝑢 [g/mol] 32.80 

𝜌𝑢 [kg/m3] 1.3214 

𝜇𝑢 [kg/(m·s)] 1.8e-5 

burned 𝑇𝑏 [K] 1500 

𝑊𝑏 [g/mol] 29.66 

𝜌𝑏 [kg/m3] 0.2480 

𝜇𝑏 [kg/(m·s)] 4.6e-5 

others 𝜎 = 𝜌𝑢 𝜌𝑏 = (𝑇𝑏𝑊𝑢) (𝑇𝑢𝑊𝑏)⁄⁄  [-] 5.06 

𝑆𝐿 0.12 

Table 6 Initial condition for cornflour explosion in Leeds fan stirred vessel. 

parameters value 

𝑇0 [K] 328 

𝑃0 [Pa] 11 000 

3.2.1. Extra source terms in standard 𝒌 − 𝜺 turbulence model 

In Leeds fan-stirred bomb experiment, a statistically stationary, spatially uniform, and isotropic 

turbulence is generated in the central zone of the vessel by four rotating fans. The rms velocity can be 

changed by varying the fan speed. If the fans are not included in simulations, which address solely the 

central region of the vessel, i.e. the region where the measurements were performed, the standard 𝑘 − 𝜀 
turbulence model yields decaying turbulence; see Figure 19. To mimic turbulence generation by the fans 

and to simulate statistically stationary turbulence, an extra source term �̅�𝜀0̃ was added to the transport 

equations for  �̃� and 𝜀̃ equations following Lipatnikov and Chomiak [31]. Detailed implementation of 

this source term is described in Appendix IX. Figure 20 shows that turbulence characteristics computed 

using the modified 𝑘 − 𝜀 model are statistically steady, in line with the measurements. 
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 (a), turbulent kinetic energy                                            (b), turbulent dissipation rate 

Figure 19 Turbulent kinetic energy and dissipation rate computed using the standard 𝑘 − 𝜀 turbulence 

model at different instants. The initial �̃�=0.96 m2/s2, 𝜀̃=17.4 m2/s3, 𝐶𝑑=0.37, 𝐿𝑡=0.02 m, Turbulence 

model is activated at 1 ms. 

 
(a), turbulent kinetic energy                                 (b), turbulent dissipation rate 

Figure 20 Turbulent kinetic energy and dissipation rate computed using the modified 𝑘 − 𝜀 turbulence 

model at different instants. Other details are provided in caption to Figure 19. 

3.2.2. Sensitivity study 

Before performing computations of the Leeds experiments, sensitivity of numerical results to input 

parameters that are not well known should be investigated. There are three groups of such parameters. 

First, the FSC model involves a single constant, i.e. 𝐴 required to evaluate turbulent burning 

velocity, see Equation (Appendix I.5). For various gaseous flames, the use of the same value of 𝐴 = 0.4 

yielded good results [23]. However, the value of 𝐴 for dust explosions could be different. Moreover, as 

already noted above, the value of the laminar flame thickness 𝛿𝐿 is not known for the dust-air mixture 

investigated in Leeds. However, because both 𝐴 and 𝛿𝐿 are included in the same model equation, i.e. 

𝑈𝑇 = 𝐴𝑢′(𝜏𝑡𝑆𝐿 𝛿𝐿⁄ )1 4⁄ , the lack of knowledge on 𝛿𝐿 could be compensated by tuning 𝐴. In particular, 

since dust particles should volatilize before burning, the laminar flame thickness of a dust-air mixture 

could be larger than the thickness of a gaseous laminar premixed flame characterized by the same 𝑆𝐿. In 

such a case, the use of the latter thickness could be compensated by adopting a lower 𝐴 < 0.4. 

Second, the 𝑘 − 𝜀 turbulence model involves a set of constants. For some of them, almost the same 

values are commonly adopted, but values of other constants depend substantially on conditions and, 

hence, are tunable. The latter group of constants includes turbulent Prandtl number 𝑃𝑟𝑡 required to 

calculate fully-developed turbulent diffusivity, see Equation (Appendix I.4)), and a constant 𝐶𝑑 required 

to link the mean dissipation rate 𝜀̃ and integral or turbulent length scale 𝐿 (i.e. 𝜀̃ = 𝐶𝑑 𝑢′
3 𝐿⁄ ), e.g. when 

setting the initial conditions or evaluating 𝜏𝑡 = 𝐿 𝑢′⁄  based on the computed �̃� and 𝜀̃. 
Third, to study dust explosion, the dust-air mixture should be ignited, but ignition of a flammable 

mixture in a turbulent flow is a very complicated phenomenon, which is beyond the scope of the present 

project. Accordingly, to mimic ignition an extra source (sink) term 𝑊𝑖𝑔𝑛 is inserted into the transport 
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equation for progress (regress) variable. The term serves solely to rapidly create a small spherical kernel 

filled with combustion products. Accordingly, the model involves four input parameters whose values 

could be varied. These are the source magnitude 𝑊0, the kernel size 𝜎𝑟, the ignition time 𝑡0, and duration 

𝜎𝑡.  Such a simplified method may be used, because (i) the Leeds experimental data were obtained from 

sufficiently large flame kernels [18] and (ii) the computed speeds of expansion of such large kernels are 

weakly affected by parameters of the ignition model, as already discussed earlier in the case of “frozen” 

turbulence. However, if turbulence evolution is simulated adopting the 𝑘 − 𝜀 model, then, short, highly 

localized, and very strong heat release associated with the term 𝑊𝑖𝑔𝑛 can strongly affect the computed 

fields of �̃� and 𝜀̃. Such a numerical effect, in fact, significantly changes the initial conditions. However, 

this effect is a numerical artifact, because neither 𝑘 − 𝜀, nor another model can describe influence of 

strongly localized heat release on turbulence, as reviewed elsewhere[32, 33]. To circumvent the problem 

and avoid the discussed unphysical effects, the 𝑘 − 𝜀 model should be activated after ignition [31], i.e. 

when term 𝑊𝑖𝑔𝑛 becomes small (it decays rapidly with time at 𝑡 > 𝑡0). Accordingly, there is one more 

important tuning parameter, i.e. time of activation of the 𝑘 − 𝜀 model. 

To summarize the above discussion, model constants and input parameters that were not varied in 

the present study are reported in Table 7, whereas model constants and input parameters that were  varied 

in the sensitivity study are shown in Table 8. 

Table 7 Model constants and input parameters that were not varied in the present study. 

 Parameter Value 

Turbulence model  𝐶𝜇 [-] 0.09 

𝐶1 [-] 1.44 

𝐶2 [-] 1.92 

𝜎𝑘 [-] 1.0 

𝜎𝜀 [-] 1.3 

𝐶𝑑 [-] 0.37-2.0 

Combustion model 𝑡𝑟 [s] 3.4e-11 

𝛩 [K] 2e4 

 

Table 8 Model constants and input parameters that were varied in the present study. 

 Parameter Value range note 

Ignition model  𝑊0 [-] - case dependent 

𝑡0 [s] around 1 ms  

𝜎𝑡 [s] 𝜎𝑡 = 𝑡0/5 depends on 𝑡0 

𝜎𝑟 [m] around 1 mm related to ignition kernel 

Turbulence 

model  
𝑃𝑟𝑡 [-] 0.3-1.0  

activation timing of 

turbulence model 

1-10 ms  

Combustion 

model  
𝐴 [-] 0.2-0.5 0.4 for gas burning 

3.2.2.1. Turbulent Prandtl number 

Effect of turbulent Prandtl number on the computed flame speed and flame thickness is shown in Figure 

21 and Figure 22. The two figures report results computed with slightly different model constants, 

because higher values of  𝐶𝑑, 𝜀̃ and 𝜎𝑟, see Figure 22, were required to obtain complete combustion in 

the centre at a low 𝑃𝑟𝑡. Accordingly, results obtained using 𝑃𝑟𝑡 = 0.3 are not shown in Figure 21, 

because the initial kernel was eroded due to turbulent diffusion for those values of 𝐶𝑑, 𝜀̃ and 𝜎𝑟 (note 

that turbulence model was activated during ignition that case and, due to thermal expansion effects, the 

computed turbulent diffusivity was strongly increased) . Nevertheless, trends observed in Figure 21 and 

Figure 22 are similar. A decrease in 𝑃𝑟𝑡 results in increasing mean turbulent flame speed and decreasing 

mean flame brush thickness.  
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(a), flame speed                                                                 (b), flame thickness 

Figure 21 Mean flame speed vs. mean flame position and mean flame brush thickness vs. time, 

obtained for different turbulent Prandtl numbers from 3-D statistically spherical flames with the initial 

�̃�=9.077 m2/s2, the initial 𝜀̃=1367.36 m2/s3, 𝐶𝑑=1.0, 𝐿𝑡=0.02 m, 𝜎𝑟= 1.5e-3 m, 𝑊0=1e14, 𝑡0=1e-3 s, 

A=0.4. Turbulence model was activated from the beginning. 

 
(a), flame speed                                                                (b), flame thickness 

Figure 22 Mean flame speed vs. mean flame position and mean flame brush thickness vs. time, 

obtained for different turbulent Prandtl numbers from 3-D statistically spherical flames with the initial 

�̃�=9.077 m2/s2, the initial 𝜀̃=2734.72 m2/s3, 𝐶𝑑=2.0, 𝐿𝑡=0.02 m, 𝜎𝑟= 2e-3 m, 𝑊0=1e15, 𝑡0=1e-3 s, 

𝐴=0.4. Turbulence model was activated at 2 ms. 
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3.2.2.2. 𝑪𝒅 coefficient 

Effects of  𝐶𝑑 coefficient on the computed results are shown in Figure 23. An increase in  𝐶𝑑 results in 

increasing the flame speed and decreasing the flame thickness. Thus, a decrease in 𝑃𝑟𝑡 and an increase 

in 𝐶𝑑 act in the same directions. 

 
(a), flame speed                                                                  (b), flame thickness 

Figure 23 Mean flame speed vs. mean flame position and mean flame brush thickness vs. time, 

obtained for different constants 𝐶𝑑 from 3-D statistically spherical flames with the initial �̃�=9.077 

m2/s2, 𝐿𝑡=0.02 m, 𝜎𝑟= 1.1e-3 m, 𝑊0=1e15, 𝑡0=1e-3 s, 𝐴 =0.4, 𝑃𝑟𝑡 =0.7. Turbulence model was 

activated at 2 ms. 

3.2.2.3. Ignition kernel size 𝝈𝒓 

Effects of the ignition kernel size 𝜎𝑟 on the computed flame speed and flame thickness are shown in 

Figure 24. This parameter weakly affects the computed results provided that combustion in the center is 

complete, i.e. mean value of the progress variable is close to unity in the center after a transition time 

interval. However, if 𝜎𝑟 is small, the kernel is eroded due to turbulent diffusivity and �̃�(𝑟 = 0, 𝑡) 
decreases with time. In such a case, the computed flame speed is low and the kernel shrinks. Thus, 

Figure 24 indicates that the value of 𝜎𝑟 weakly affects the mean speed of a sufficiently large flame kernel 

provided the value of 𝜎𝑟 is sufficient to get the complete combustion in the center. This finding is in line 

with the results plotted in Figure 16. 

 
(a), flame speed                                                            (b), flame thickness 

Figure 24 Mean flame speed vs. mean flame position and mean flame brush thickness vs. time, 

obtained for different values of 𝜎𝑟 from 3-D statistically spherical flames with the initial �̃�=9.077 

m2/s2, 𝐿𝑡=0.02 m, 𝜎𝑟= 1.1-1.3 mm, 𝐶𝑑=1.4, 𝑊0=1e15, 𝑡0=1e-3 s, 𝐴 =0.4, 𝑃𝑟𝑡 =0.7. Turbulence 

model was activated at 2 ms. 
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3.2.2.4. Timing for activating turbulence model 

Effects of timing for activating turbulence model are shown in Figure 25. The result indicates that earlier 

activation of the turbulence model yields a higher flame speed. The reason is that a higher turbulent 

kinetic energy is calculated when activating turbulence model early; see Figure 26. However, this is so 

if combustion in the center is complete. Otherwise, earlier activation of the turbulence model can result 

in shrinking the kernel due to too intense turbulent diffusivity yielded by the 𝑘 − 𝜀 model. 

It is also worth noting that the Leeds experiments did not reveal generation of turbulence after 

ignition. For instance Bradley et al.[29] have stated that “laser anemometry ahead of the flame showed 

… no evidence of any significant change in 𝑢′”. Solid curve in Figure 26 agrees qualitatively with the 

cited observation, thus, justifying activation of the 𝑘 − 𝜀 model after the end of ignition.  

The timing for activating turbulence model has a minor effect on the computed flame thickness 

provided that combustion is complete in the centre. Accordingly, the figure is not reported here. 

 
Figure 25 Computed flame speed vs flame position for different timing for activating turbulence model 

for 3-D spherical flame with initial �̃�=9.077 m2/s2, 𝐿𝑡=0.02 m, 𝜎𝑟= 1.5e-3 m, 𝑊0=1e14, 𝑡0=1e-3 s, 

𝐴 =0.4, 𝑃𝑟𝑡 =0.7. Turbulence model is activated at 0, 1 and 2 ms. 

 
Figure 26 Computed maximum turbulent kinetic energy �̃� vs. time for different timing for activating 

turbulence model. The initial �̃�=9.077 m2/s2, 𝐿𝑡=0.02 m, 𝜎𝑟= 1.5e-3 m, 𝑊0=1e14, 𝑡0=1e-3 s, 𝐴 =0.4, 

𝑃𝑟𝑡 =0.7. Turbulence model is activated at 1 and 2 ms. 

3.3. First test of model 

A summary of the initial turbulence characteristics for the model input is shown in Table 9. The rest of 

the initial and boundary conditions for simulation are reported in Figure 18, Table 5 and Table 6. 

Table 9 Initial turbulence characteristics using  𝐶𝑑=1.2 and 𝐿𝑡=0.02 m. 

𝑢′ [m/s] 0.80 1.62 2.45 3.31 

�̃� [m2/s2] 0.96 3.94 9.004 16.43 

𝜀̃ [m2/s3] 56.44 468.63 1621.01 3997.35 

Results of a “first-shot” test of the model are shown in black open symbols in Figure 27, with the 
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measured data being plotted in black filled symbols. The experiments and simulations show the same 

qualitative trends, i.e. (i) a quasi-linear increase in 𝑆𝑡 by 𝑢′ and (ii) an increase in 𝑆𝑡 with the flame 

kernel radius. Contrary to trend (ii), the experiments performed at the largest 𝑢′ = 5.0 m/s indicate a 

decrease in the flame speed with the flame radius due to quenching of a large flame kernel by turbulence. 

Such a phenomenon is well known from experiments with gaseous flames and there is no model capable 

for quantitatively predicting this quenching effect. However, this phenomenon is beyond the scope of 

the present project that addresses dust explosions, rather than quenching by intense turbulence. For lower 

values of 𝑢′, trend (ii) is observed both in the simulations and measurements. 

However, from the quantitative perspective, the model yields overestimated flame speeds. This 

overestimation could result not only from eventual model limitations, but also from (i) inappropriate set 

of values of 𝐶𝑑 and 𝑃𝑟𝑡, (ii) an overestimated value of the laminar flame thickness 𝛿𝐿, or (iii) differences 

in the values of 𝐴 for gaseous and dust-air mixtures. For instance, the red filled circles in Figure 27 

indicate that 𝑆𝑡 computed using 𝐴 = 0.35 is close to the experimental data. Note that, since 𝑈𝑡 =

𝐴𝑢′(𝜏𝑡𝑆𝐿 𝛿𝐿⁄ )1 4⁄ , a decrease in 𝐴 from 0.40 to 0.35 corresponds to an increase in the thickness 𝛿𝐿 by a 

factor of 1.7 only. As already discussed, a larger value of the thickness 𝛿𝐿 are expected for dust-air 

mixtures when compared to gaseous fuel-air mixtures, because dust particles should volatilize before 

burning. 

 
Figure 27 Comparison of flame speed between simulations (dashed lines) and Leeds experiments (line 

with symbols) for 3-D spherical flame with different initial turbulent velocity fluctuations, 𝐶𝑑=1.2,  
𝐿𝑡=0.02 m, 𝜎𝑟= 1.1e-3 m, 𝑊0=1e15, 𝑡0=1e-3 s, 𝐴 =0.4, 𝑃𝑟𝑡 =0.7. Turbulence model is activated at 2 

ms. Note for u’=3.31 m/s, 𝜎𝑟= 1.5e-3 m is used to achieve a complete ignition. The diamond symbol 

represents the laminar flame speed multiplied with density ratio; the read filled circles represents 

calculated flame speed using 𝐴 =0.35, 𝑃𝑟𝑡 = 0.5. Note for u’=1.62 m/s, 𝜎𝑟= 1.5e-3 m is used to 

achieve a complete ignition. 

All in all, the results of the first-shot test appear to be encouraging. In the nearest next stage of the 

project, an optimum set {𝐶𝑑 , 𝑃𝑟𝑡, 𝐴} of the numerical model constants will be sought to achieve a better 

agreement between the simulations and experiments. Subsequently, the model will be applied to other 

large-scale, but less-controlled experiments and will eventually be further developed, e.g. by taking into 

account heat transfer due to radiation. 
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4. Publications, presentations and other 

spreading within framework of project 

The project results are distributed to the reference group members via three reference group meetings 

on 190509, 191107 and 200116.  The reference group members are a balance between academy and 

industry with members of PS Group, Scandbio, AVS, Hoerbiger, Göteborgs Energi, Fagerberg, 

Chalmers, Dust-Ex Research (Canada), Ulster University (UK) and RISE.  

The project results are planned to be presented at Digital Dust Safety Conference in February 24 - 

28, 2020, and 12th FM Global Open Source CFD Fire Modeling Workshop on 2-3, April, 2020. 
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Appendix I. Flame Speed Closure (FSC) 

and ignition models 

The FSC model characterizes the state of the mixture in a flame using a single combustion progress 

variable 𝑐 and deals with the following balance equation 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) = 𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�] + 𝜌𝑢𝑈𝑡|𝛻�̃�| +

�̅�(1 − �̃�)

𝑡𝑟(1 + 𝐷𝑡 𝜅𝑏⁄ )
exp (−

Θ

�̃�
),  (Appendix I.1) 

where 𝑡 is the time, 𝐮 is the flow velocity vector, 𝜌 is the density, 𝜅 is the molecular heat diffusivity, 𝐷𝑡 
and 𝑈𝑡 are the time-dependent turbulent heat diffusivity and burning velocity, respectively. Subscripts 

u and b refer to the unburned and burned mixture, respectively. Overlines denote the Reynolds average, 

while �̃� = 𝜌𝑞̅̅̅̅ �̅�⁄  is the Favre-averaged value of 𝑞. 

The FSC model allows directly for the transient nature of a turbulent burning. For this purpose, the 

development of turbulent diffusivity and burning velocity is modelled as follows  

𝐷𝑡 = 𝐷𝑡,∞ [1 − exp (−
𝑡𝑓𝑑

𝜏𝐿
)] ,  (Appendix I.2) 

𝑈𝑡 = 𝑈𝑡,∞ [1 −
𝜏𝐿
𝑡𝑓𝑑

+
𝜏𝐿
𝑡𝑓𝑑
exp (−

𝑡𝑓𝑑

𝜏𝐿
)]

1/2

,  (Appendix I.3) 

where 𝑡𝑓𝑑 is the flame development time, 𝜏𝐿 = 𝐷𝑡,∞/𝑢′
2 is the Lagrangian time scale of turbulence, and 

𝐷𝑡,∞ and 𝑈𝑡,∞ are the fully developed turbulent diffusivity and burning velocity, respectively. 

To evaluate the fully developed turbulent diffusivity 𝐷𝑡,∞, a turbulence model should be invoked, 

e.g. 

𝐷𝑡,∞ =
𝐶𝜇

𝑃𝑟𝑡

�̃�2

𝜀̃
 

 (Appendix I.4) 

within the framework of the standard 𝑘 − 𝜀 model. Here, 𝑘 and 𝜀 are the turbulent kinetic energy and 

its dissipation rate, respectively; 𝐶𝜇 = 0.09 is a constant, and 𝑃𝑟𝑡 is the turbulent Prandtl number (a ratio 

of the turbulent transport of momentum to that of heat). 

The fully developed turbulent burning velocity is given by the following theoretical expression [34] 

𝑈𝑡,∞ = 𝐴𝑢
′𝐷𝑎1/4 = 𝐴𝑢′3/4𝐿1/4𝑆𝐿

1/4
𝛿𝐿
−1/4

  (Appendix I.5) 
 

 

where 𝐴 is the sole constant of the FSC model; 𝐷𝑎 = 𝜏𝑡 𝜏𝑐⁄  is the Damköhler number; 𝑢′ = 2�̃�1 2⁄ 3⁄ , 

𝐿 = 𝐶𝑑 �̃�
3 2⁄ 𝜀̃⁄ ,  and 𝜏𝑡 = 𝐿 𝑢′⁄  are the rms turbulent velocity, integral length scale, and eddy-turn-over 

time, respectively; 𝜏𝑐 = 𝛿𝐿 𝑆𝐿⁄ , 𝛿𝐿 = 𝜅𝑢 𝑆𝐿⁄ , and 𝑆𝐿 are the chemical time scale, laminar flame thickness 

and laminar flame speed, respectively. The constant 𝐶𝑑 pertains to the turbulence model and depend on 

turbulent Reynolds number. 

The last source term on the right hand side of Equation (Appendix I.6) is used in order for the model 

to describe the laminar flame at 𝑢′ → 0. In this source term 𝛩 = 20 000 K is the activation temperature 

for a single reaction to which the combustion chemistry is reduced and the reaction time scale 𝑡𝑟 is set 

so that the burning velocity computed at 𝑢′ = 0,𝐷𝑡 = 0, and 𝑈𝑡 = 0 is equal to the laminar flame speed 

𝑆𝐿, which is an input parameter of the model. It is worth noting that not only the complete version of the 

FSC model, but also its truncated version, i.e. Equation (Appendix I.1) without the last  source term, 

were used within the framework of the present project, with the truncated version being adopted to verify 

the model implementation by comparing numerical and analytical results. 

To simulate ignition of the mixture, an extra source term is added on the right-hand side of Equation 

(Appendix I.1), i.e. 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) = 𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�] + 𝜌𝑢𝑈𝑡|𝛻�̃�| +

�̅�(1 − �̃�)

𝑡𝑟(1 + 𝐷𝑡 𝜅𝑏⁄ )
exp (−

Θ

�̃�
)

+ �̅�𝑊𝑖𝑔𝑛, 
 (Appendix I.6) 

where, following Ref. [35], 
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𝑊𝑖𝑔𝑛 = 𝑊0exp {− [(
𝑟

𝜎𝑟
)
2

+ (
𝑡 − 𝑡0
𝜎𝑡

)
2

]} (1 − �̃�).  (Appendix I.7) 

Here, 𝑊0, 𝜎𝑟, 𝜎𝑡 are parameters for ignition model. More specifically, 𝑡0 is associated with ignition 

time, 𝜎𝑡 characterizes ignition duration, and 𝜎𝑟 corresponds to the size of ignition kernel. The factor 𝑊0 

is associated with the ignition strength and should be set sufficiently large in order for �̃�(𝑟 = 0, 𝑡0) to 

be close to unity. 
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Appendix II. Transport equations for 

progress and regress variables.  

The FSC transport equation for the Favre-averaged progress variable �̃� with extra ignition term is as 

follows 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) = 𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�] + 𝜌𝑢𝑈𝑡|𝛻�̃�| + 𝑄 + �̅�𝑊𝑖𝑔𝑛  (Appendix II.1) 

where  

𝑄 =
�̅�(1 − �̃�)

𝑡𝑟(1 + 𝐷𝑡 𝜅𝑏⁄ )
exp (−

Θ

�̃�
)  (Appendix II.2) 

and 

𝑊𝑖𝑔𝑛 = 𝑊0exp {− [(
𝑟

𝜎𝑟
)
2

+ (
𝑡 − 𝑡0
𝜎𝑡

)
2

]} (1 − �̃�).  (Appendix II.3) 

By substituting �̃� = 1 − �̃� into the �̃� equation, we get 

𝜕�̅�(1 − �̃�)

𝜕𝑡⏟      
1

+ 𝛻. (�̅��̃�(1 − �̃�))⏟          
2

= 𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻(1 − �̃�)]⏟              
3

+ 𝜌𝑢𝑈𝑡|𝛻(1 − �̃�)|⏟          
4

+ �̅�𝑊𝑖𝑔𝑛 + 𝑄 

 (Appendix II.4) 

For term 1 in the above equation, we can write 

𝜕�̅�(1 − �̃�)

𝜕𝑡
=
𝜕�̅�

𝜕𝑡
−
𝜕�̅��̃�

𝜕𝑡
  (Appendix II.5) 

For term 2, we can write 

𝛻. (�̅��̃�(1 − �̃�)) = 𝛻. (�̅��̃�) − 𝛻. (�̅��̃��̃�)  (Appendix II.6) 

For term 3, we can write 

𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻(1 − �̃�)] = −𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�]  (Appendix II.7) 

since  

𝛻(1 − �̃�) = −𝛻�̃�  (Appendix II.8) 

For term 4, we can write 

𝜌𝑢𝑈𝑡|𝛻(1 − �̃�)| = 𝜌𝑢𝑈𝑡|𝛻�̃�|  (Appendix II.9) 

since |𝛻(1 − �̃�)| = |𝛻�̃�|. 
Therefore, Equation (Appendix II.4) can be rewritten as  

𝜕�̅�

𝜕𝑡
−
𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃�) − 𝛻. (�̅��̃��̃�)

= −𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�] + 𝜌𝑢𝑈𝑡|𝛻�̃�| + 𝑄 + �̅�𝑊𝑖𝑔𝑛 

 (Appendix II.10) 

Due to mass conservation, 

𝜕�̅�

𝜕𝑡
+ 𝛻. (�̅��̃�) = 0  (Appendix II.11) 

and Equation (Appendix II.10) finally reads  

−
𝜕�̅��̃�

𝜕𝑡
− 𝛻. (�̅��̃��̃�) = −𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�] + 𝜌𝑢𝑈𝑡|𝛻�̃�| + 𝑄 + �̅�𝑊𝑖𝑔𝑛  (Appendix II.12) 

Reorganizing Equation (Appendix II.12) and substituting Equations (Appendix II.2) and (Appendix 
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II.3) into Equation (Appendix II.12), we get the following balance equation for the regress variable 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) − 𝛻. [�̅�(𝜅 + 𝐷𝑡)𝛻�̃�] + 𝜌𝑢𝑈𝑡|𝛻�̃�| 

+
�̅��̃�

𝑡𝑟(1 + 𝐷𝑡 𝜅𝑏⁄ )
exp (−

Θ

�̃�
) 

+�̅�𝑊0exp {− [(
𝑟

𝜎𝑟
)
2

+ (
𝑡 − 𝑡0
𝜎𝑡

)
2

]} �̃� = 0 

 (Appendix II.13) 

Note, if the term with �̃� is on the LHS of equation with a plus sign, it will decrease �̃� and act as a 

sink term in the transport equation. 
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Appendix III. Analytical solutions to 

the FSC model equations 

As proved elsewhere [17], the planar 1-D Equation (Appendix II.1) without the last source term and 

with 𝜅 = 0, i.e. the truncated FSC model, has the following benchmark analytical solution 

𝑐̅ =
1

2
erfc(𝜉√𝜋) = √

1

𝜋
∫ 𝑒−𝜁

2
𝑑𝜁

∞

𝜁√𝜋

  (Appendix III.1) 

provided that Equation (3) holds and neither 𝐷𝑡 nor 𝑈𝑡 varies in the space. The complementary error 

function erfc(𝜉√𝜋) can be calculated using a python script reported in Appendix IV. Here,  

𝜉 =
𝑥 − 𝑥𝑓

∆𝑡
  (Appendix III.2) 

is the normalized distance, 𝑥𝑓 is the mean flame position, associated with 𝑐̅=0.5, mean flame brush 

thickness ∆𝑡 is defined as follows 

 ∆𝑡=
1

|
𝑑�̅�

𝑑𝑥
|
max

  (Appendix III.3) 

and grows following turbulent diffusion law 

∆𝑡= 2𝑢′ {𝜋𝜏𝐿𝑡𝑓𝑑 [1 −
𝜏𝐿
𝑡𝑓𝑑

+
𝜏𝐿
𝑡𝑓𝑑
exp (−

𝑡𝑓𝑑

𝜏𝐿
)]}

1 2⁄

.  (Appendix III.4) 

This solution describes a developing turbulent wave with self-similar mean structure, i.e. 

dependence of 𝑐̅ on two independent variables 𝑥 and 𝑡 reduces to 𝑐̅(𝜉). It is also worth noting that, while 

the transport Equation (Appendix II.1) describes evolution of the Favre-averaged combustion progress 

variable, the solution is written for the Reynolds-averaged progress variable using the BML identity 

�̅��̃� = 𝜌𝑏𝑐̅ [24]. 

In the considered 1-D planar case, turbulent flame speed is equal to turbulent burning velocity given 

by Equations (Appendix I.3) and (Appendix I.5). In 1-D spherical case, turbulent flame speed is reduced 

due to mean curvature of the flame brush. This reduction effect is approximately evaluated as follows  

1

𝜎

𝑑𝑥𝑓

𝑑𝑡
= 𝑈𝑡∫ �̃�𝑟𝑑𝑟

∞

0

{∫ 𝑐̅𝑟𝑑𝑟
∞

0

}

−1

,  (Appendix III.5) 

see  Equation (7.147) on page 364 in Ref. [28]. 
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Appendix IV. Python script of 

calculating complementary error function 

import numpy as np   # import numpy library 
 
zeta=np.arange(-2,2.1,0.1)  #zeta is 𝜉 in Equation (Appendix III.2) 
xi=zeta/pow(math.pi,0.5)    #xi is 𝜁 in Equation (Appendix III.1) 
zn=np.where(zeta>=0,1.,-1.)   # if xi >=0, yield 1, otherwise yeild -1 
zz=1./(1.+0.47047*zeta*zn) 
f=0.5*(1.+zn*(1.-(0.3480242*zz-0.0958709*zz*zz+0.7478556*zz*zz*zz)*np.exp(-zeta*zeta))) 
cBar_ana=1.-f   #cBar_ana is the analytical Reynolds-averaged progress variable 
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Appendix V. Implementation of model in 

solver and library 

The newly developed solver which deals with cornflour dust explosion is called FSCFoam_cornflour. It 
is based on the XiFoam solver in standard OpenFOAM, the files which have been modified are as 

follows: 

FSCFoam_cornflour.C      //the main file 

createFields.H                   //create fields 

myCreateFields.H 
createFieldRefs.H 
createOutput.H                   // create output file 
infoDataOutput.H 
readCombustionProperties.H       
readThermophysicalProperties.H 
readCBarIsosurfaces.H                     // create and calculate flame positions 
calculateCBarIsosurfaces.H             
bEqn.H                                 //solve regress variable equation 
St_FSC.H                              //calculate turbulent burning velocity 

 

Part of the FSCFoam_cornflour.C is shown here with important implementations commented. 

        // --- Pressure-velocity PIMPLE corrector loop 
        while (pimple.loop()) 
        { 
            #include "rhoEqn.H"     // include mass conservation equation, from Ehsans code 190605 
            #include "UEqn.H" 
 
            #include "bEqn.H"    // solve regress variable equation 
//not solve energy equations, but update psi, T, mut, alphat  
            thermo.correct(); 
// calculate a new density based on BML, compare OF density with new density  
            rho = thermo.rho(); 
            rhoBML = p/(Rconst*(b*thermo.Tu()/Wreac+(1.-b)*thermo.Tb()/Wprod));  
            rhoDiff = (rho - rhoBML)/rho; 
//calculate Reynolds-averaged c using BML 
            cBar = thermo.rhou()*c/(thermo.rhob()*(1.-c)+thermo.rhou()*c);   
 
            // --- Pressure corrector loop 
            while (pimple.correct()) 
            { 
                #include "pEqn.H" 
            } 
 
            if (pimple.turbCorr()) 
            { 
                turbulence->correct(); 
// update alphat according to correctNut() in 
src/TurbulenceModels/compressible/EddyDiffusivity/EddyDiffusivity.C; CH 2019-08-22 
                turbulence->correctEnergyTransport(); 
            } 
        } 
         
//recalculated densities and Reynolds-averaged c 
        rho = thermo.rho(); 
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        rhoBML = p/(Rconst*(b*thermo.Tu()/Wreac+(1.-b)*thermo.Tb()/Wprod));  
        rhoDiff = (rho - rhoBML)/rho; 
        cBar = thermo.rhou()*c/(thermo.rhob()*(1-c)+thermo.rhou()*c); 
        rhoDiff_max = max(rhoDiff).value();  
 
// for parallel computation but works for serial computing 
// reducing values of a variable from all processors to one value, using a max operator  
        reduce(rhoDiff_max, maxOp<scalar>()); 
        #include "calculateCBarIsosurfaces.H"   //calculate cBar iso-surfaces 
        #include "infoDataOutput.H"   //output data 
 

 

Part of bEqn.H file is shown here with comments to code 

    //calculate unburned and burned denisty 
    rhou = thermo.rhou();  
    rhob = thermo.rhob();  
…… 
// do not use OF ignition model 
//    #include "StCorr.H" 
 
    // Calculate turbulent flame speed flux 
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
//    surfaceScalarField phiSt("phiSt", fvc::interpolate(rhou*StCorr*Su*Xi)*nf); 
//do not use OF ignition model 

surfaceScalarField phiSt("phiSt", fvc::interpolate(rhou*Su*Xi)*nf); 
 

//----------------CH2019-04-01--------------------// 
    up = uPrimeCoef*sqrt((2.0/3.0)*turbulence->k()); 
    Info << "min(up)= " << min(up) << endl; 
    Info << "max(up)= " << max(up) << endl; 
// alphat : turbulent thermo diffusivity    [kg/(ms)] 
    alphat=turbulence->alphat(); 
//    alpha_turb=0.09*sqr(turbulence->k())/(0.7*turbulence->epsilon())*thermo.rho(); 
// alpha_thermo : laminar thermo diffusivity 
    alpha_thermo=thermo.alpha(); 
    Info << "min alpha_thermo = " << min(alpha_thermo) << endl; 
    Info << "max alpha_thermo = " << max(alpha_thermo) << endl; 
// tau_turb_prime : Lagrangian time scale of turbulence 
    tau_turb_prime=alphat/(rho*pow(up,2)); 
//    tau_turb_prime=0.09*1.5*turbulence->k()/(0.7*turbulence->epsilon()); 
// calcualte t_fd : flame development time 
    t_fd = runTime - t_0;      
//    t_fd = runTime; // flame development time is the runTime      
    alpha_turb_time=1.-exp(-t_fd/tau_turb_prime); 
    // time-dependent term plays role only after ignition t_0 
    if (t_fd.value() <= 0. ) 
    { 
         alpha_turb_transient = 0.0*alphat; 
    } 
    else{ 
         alpha_turb_transient=alphat*alpha_turb_time; 
    } 
    //ignition source term increase slowly 
    W_ign_coeff = exp(-pow(ign_dist/sigma_r,2)-pow(t_fd/sigma_t,2)); 

myPrt=turbulence->mut()/(turbulence->alphat()+alphatSMALL);  
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   // Create b equation 
    // ~~~~~~~~~~~~~~~~ 
    fvScalarMatrix bEqn 
    ( 
        fvm::ddt(rho, b)                                               // term 1: transient 
      + mvConvection->fvmDiv(phi, b)                    // term 2: convection 
      - fvm::laplacian(alpha_turb_transient+alpha_thermo, b)   // term 3: diffusion 
      + fvm::div(phiSt, b)                                           // term 4: gradient 
      - fvm::Sp(fvc::div(phiSt), b)                              // term 4: gradient 
     == 
        fvOptions(rho, b) 
     //fvm::SuSp() implicit treatment of source or sink term depending on sign 
      - fvm::SuSp(rho*W_0*W_ign_coeff,b) // term 5: ignition 
      - fvm::SuSp(rho/tr/(1.+alpha_turb_transient/alphab_thermo)*exp(-Ta/thermo.T()),b) // term 6: 
extra source term  
    ); 
 
// remove ignition model from OF 
//    #include "ignite.H" 
 
    // Solve for b 
    // ~~~~~~~~~~~ 
    bEqn.relax(); 
 
    fvOptions.constrain(bEqn); 
 
    bEqn.solve(); 
 
    fvOptions.correct(b); 
 
    // Limit b between 0 and 1 
    b.min(1.0); //force min value being 0 
    b.max(0.0); //force max value being 1 
// calculate progress variable c 
    c = 1. - b; 
    c_max = max(c).value(); 
//calculate cBar 
    cBar = thermo.rhou()*c/(thermo.rhob()*(1.-c)+thermo.rhou()*c); 
…… 
    // Calculate Xi according to the selected flame wrinkling model 
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
    if (XiModel == "fixed") 
    { 
        // Do nothing, Xi is fixed! 
    } 
…… 
//calculate turbulent burning velocity using FSC model, CH180320 
    else if (XiModel == "FSC") 
    { 
         #include    "St_FSC.H" 
    } 

 

Part of St_FSC.H file is shown here with comments to code 
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    Info<< "Open St_FSC.H file \n"<< endl; 
//calculate turbulent length scale L_t 
    L_t = CdCoef*pow(turbulence->k(),1.5)/turbulence->epsilon(); 
// calculate turbulent time scale tau_turb 
    tau_turb = L_t/up; 
//calculate chemical time scale [s] 
    alphau_thermo = thermo.muu()/Pr; 
    tau_chem = alphau_thermo/(rhou*pow(Su,2)); 
//calculate Damkohler number Da 
    Da = tau_turb/tau_chem; 
//calculate turbulent flame speed St 
    St = A*up*pow(Da,0.25); 
    // time-dependent term of turbulent flame speed 
    // FSC model plays role only after ignition 
    if (t_fd.value() <= 0.) 
    { 
        St_time = 0.; 
    } 
    else 
    { 
        St_time = pow(1.+tau_turb_prime/(t_fd+TimeSMALL)*(exp(-
t_fd/(tau_turb_prime+TimeSMALL))-1.), 0.5); 
//        St_time = pow(1.+tau_turb_prime/t_fd*(exp(-t_fd/tau_turb_prime)-1.), 0.5); // for analytical 
solution 
    } 
 
    // transient turbulent flame speed St_transient 
    St_transient = St * St_time; 
    Xi = St_transient/Su; 
    Info<< "End St_FSC.H file \n"<< endl; 

 

Part of the code where the calculation of mean temperature and density are evaluated in the library of 

src/thermophysicalModels/reactionThermo/psiuReactionThermo/heheuPsiThermo.C 

void Foam::heheuPsiThermoBML_cornflour<BasicPsiThermo, MixtureType>::calculate() 
{ 
    const scalarField& pCells = this->p_; 
 
    scalarField& TCells = this->T_.primitiveFieldRef(); 
    scalarField& TuCells = this->Tu_.primitiveFieldRef(); 
    scalarField& psiCells = this->psi_.primitiveFieldRef(); 
    scalarField& muCells = this->mu_.primitiveFieldRef(); 
    scalarField& alphaCells = this->alpha_.primitiveFieldRef(); 
//get access to regress variable, CH190408 
    const scalarField& bCells = this->composition().Y("b"); 
    volScalarField psiu_(psiu()); 
    scalarField& psiuCells = psiu_; 
    volScalarField psib_(psib()); 
    scalarField& psibCells = psib_; 
    volScalarField Tb_(Tb()); 
    scalarField& TbCells = Tb_; 
    volScalarField muu_(muu()); 
    scalarField& muuCells = muu_; 
    volScalarField mub_(mub()); 
    scalarField& mubCells = mub_; 
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    forAll(TCells, celli) 
    { 
//        const typename MixtureType::thermoType& mixture_ = 
//            this->cellMixture(celli); 
        // reset Tu, Tb, psiu and psib 
        TuCells[celli] = 328; //initial temperture 
        TbCells[celli] = 1500;   // calculated value of 1592  
        psiuCells[celli] = this->cellReactants(celli).psi(pCells[celli], TuCells[celli]); 
        psibCells[celli] = this->cellProducts(celli).psi(pCells[celli], TbCells[celli]); 
        muuCells[celli] = this->cellReactants(celli).mu(pCells[celli], TuCells[celli]); 
        mubCells[celli] = this->cellProducts(celli).mu(pCells[celli], TbCells[celli]); 
 
 
        if (this->updateT()) 
        { 
            if (bCells[celli] > 0.999) //if unburned, properties are set to unburned 
            { 
                TCells[celli] = TuCells[celli]; 
                psiCells[celli] = psiuCells[celli]; 
                muCells[celli] = muuCells[celli]; 
                alphaCells[celli] = this->cellReactants(celli).alphah(pCells[celli], TuCells[celli]); 
            } 
            else if (bCells[celli] < 0.001) //if burned, properties are set to burned 
            { 
                TCells[celli] = TbCells[celli]; 
                psiCells[celli] = psibCells[celli]; 
                muCells[celli] = mubCells[celli]; 
                alphaCells[celli] = this->cellProducts(celli).alphah(pCells[celli], TbCells[celli]); 
            } 
            else //if in between, properties are calculated by BML 
            { 
                TCells[celli] = bCells[celli]*TuCells[celli]+(1.0-bCells[celli])*TbCells[celli]; 
                psiCells[celli] = psiuCells[celli]/(bCells[celli]+psiuCells[celli]/psibCells[celli]*(1.0-
bCells[celli])); 
                muCells[celli] = bCells[celli]*muuCells[celli]+(1.0-bCells[celli])*mubCells[celli]; 
                scalar alphauCells = this->cellReactants(celli).alphah(pCells[celli], TuCells[celli]); 
                scalar alphabCells = this->cellProducts(celli).alphah(pCells[celli], TbCells[celli]); 
                alphaCells[celli] = bCells[celli]*alphauCells + (1.0-bCells[celli])*alphabCells; 
            } 
        } 
    } 
 
…… 
//get access to regress variable, CH 190623 
    volScalarField::Boundary& bBf = 
        this->composition().Y("b").boundaryFieldRef(); 
 
    volScalarField::Boundary& psiuBf = 
        psiu_.boundaryFieldRef(); 
 
    volScalarField::Boundary& psibBf = 
        psib_.boundaryFieldRef(); 
 
    volScalarField::Boundary& TbBf = 
        Tb_.boundaryFieldRef(); 
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    volScalarField::Boundary& muuBf = 
        muu_.boundaryFieldRef(); 
 
    volScalarField::Boundary& mubBf = 
        mub_.boundaryFieldRef(); 
//-------------------------------end 190623-----------------------------// 
    forAll(this->T_.boundaryField(), patchi) 
    { 
        fvPatchScalarField& pp = pBf[patchi]; 
        fvPatchScalarField& pT = TBf[patchi]; 
        fvPatchScalarField& pTu = TuBf[patchi]; 
        fvPatchScalarField& ppsi = psiBf[patchi]; 
        fvPatchScalarField& pmu = muBf[patchi]; 
        fvPatchScalarField& palpha = alphaBf[patchi]; 
//-----------------------------CH 190623--------------------------------// 
        fvPatchScalarField& pb = bBf[patchi]; 
        fvPatchScalarField& ppsiu = psiuBf[patchi]; 
        fvPatchScalarField& ppsib = psibBf[patchi]; 
        fvPatchScalarField& pTb = TbBf[patchi]; 
        fvPatchScalarField& pmuu = muuBf[patchi]; 
        fvPatchScalarField& pmub = mubBf[patchi]; 
//-------------------------------end 190623-----------------------------// 
 
        if (pT.fixesValue()) 
        { 
            forAll(pT, facei) 
            { 
//                const typename MixtureType::thermoType& mixture_ = 
//                    this->patchFaceMixture(patchi, facei); 
//reset mixture properties, CH 190623 
                pTu[facei] = 328; 
                pTb[facei] = 1500;  // calculated value of 1592 
                ppsiu[facei] = this->patchFaceReactants(patchi, facei).psi(pp[facei],pTu[facei]); 
                ppsib[facei] = this->patchFaceProducts(patchi, facei).psi(pp[facei],pTb[facei]); 
                pmuu[facei] = this->patchFaceReactants(patchi, facei).mu(pp[facei], pTu[facei]); 
                pmub[facei] = this->patchFaceProducts(patchi, facei).mu(pp[facei], pTb[facei]); 
                if(pb[facei] > 0.999)  // if unburned, boundary properties are set unburned 
                { 
                    ppsi[facei] = ppsiu[facei]; 
                    pmu[facei] = pmuu[facei]; 
                    palpha[facei] = this->patchFaceReactants(patchi, facei).alphah(pp[facei], pTu[facei]); 
                } 
                else if(pb[facei] < 0.001) // if burned, boundary properties are set burned 
 
                { 
                    ppsi[facei] = ppsib[facei]; 
                    pmu[facei] = pmub[facei]; 
                    palpha[facei] = this->patchFaceProducts(patchi, facei).alphah(pp[facei], pTb[facei]); 
                } 
                else  //if in between, boundary properties follow BML 
                { 
                    ppsi[facei] = ppsiu[facei]/(pb[facei]+ppsiu[facei]/ppsib[facei]*(1.0-pb[facei])); 
                    pmu[facei] = pmuu[facei]*pb[facei]+pmub[facei]*(1.-pb[facei]); 
                    scalar palphau = this->patchFaceReactants(patchi, facei).alphah(pp[facei], pTu[facei]); 
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                    scalar palphab = this->patchFaceProducts(patchi, facei).alphah(pp[facei], pTb[facei]); 
                    palpha[facei] = pb[facei]*palphau + (1.-pb[facei])*palphab; 
                } 
//-------------------------------end 190623-----------------------------// 
            } 
        } 
        else 
        { 
            forAll(pT, facei) 
            { 
//                const typename MixtureType::thermoType& mixture_ = 
//                    this->patchFaceMixture(patchi, facei); 
//similar as before, CH 190623 
                pTu[facei] = 328; 
                pTb[facei] = 1500; // calculated value of 1592 
                ppsiu[facei] = this->patchFaceReactants(patchi, facei).psi(pp[facei],pTu[facei]); 
                ppsib[facei] = this->patchFaceProducts(patchi, facei).psi(pp[facei],pTb[facei]); 
                pmuu[facei] = this->patchFaceReactants(patchi, facei).mu(pp[facei], pTu[facei]); 
                pmub[facei] = this->patchFaceProducts(patchi, facei).mu(pp[facei], pTb[facei]); 
                if (this->updateT()) 
                { 
                    if(pb[facei] > 0.999) 
                    { 
                        pT[facei] = pTu[facei]; 
                        ppsi[facei] = ppsiu[facei]; 
                        pmu[facei] = pmuu[facei]; 
                        palpha[facei] = this->patchFaceReactants(patchi, facei).alphah(pp[facei], pTu[facei]); 
                    } 
                    else if(pb[facei] < 0.001) 
                    { 
                        pT[facei] = pTb[facei]; 
                        ppsi[facei] = ppsib[facei]; 
                        pmu[facei] = pmub[facei]; 
                        palpha[facei] = this->patchFaceProducts(patchi, facei).alphah(pp[facei], pTb[facei]); 
                    } 
                    else 
                    { 
                        pT[facei] = pb[facei]*pTu[facei]+(1.0-pb[facei])*pTb[facei]; 
                        ppsi[facei] = ppsiu[facei]/(pb[facei]+ppsiu[facei]/ppsib[facei]*(1.0-pb[facei])); 
                        pmu[facei] = pmuu[facei]*pb[facei]+pmub[facei]*(1.-pb[facei]); 
                        scalar palphau = this->patchFaceReactants(patchi, facei).alphah(pp[facei], pTu[facei]); 
                        scalar palphab = this->patchFaceProducts(patchi, facei).alphah(pp[facei], pTb[facei]); 
                        palpha[facei] = pb[facei]*palphau + (1.-pb[facei])*palphab; 
                    } 
//-------------------------------end 190623-----------------------------// 
                } 
            } 
        } 
    } 
} 
 
…… 
template<class BasicPsiThermo, class MixtureType> 
Foam::tmp<Foam::volScalarField> 
Foam::heheuPsiThermoBML_cornflour<BasicPsiThermo, MixtureType>::Tb() const 



44 

 

{ 
    tmp<volScalarField> tTb 
    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "Tb", 
                this->T_.time().timeName(), 
                this->T_.db(), 
                IOobject::NO_READ, 
                IOobject::NO_WRITE, 
                false 
            ), 
            this->T_ 
        ) 
    ); 
 
    volScalarField& Tb_ = tTb.ref(); 
    scalarField& TbCells = Tb_.primitiveFieldRef(); 
 
    forAll(TbCells, celli) 
    { 
        TbCells[celli] = 1500;  //set burned temperature 
    } 
 
    volScalarField::Boundary& TbBf = Tb_.boundaryFieldRef(); 
 
    forAll(TbBf, patchi) 
    { 
        fvPatchScalarField& pTb = TbBf[patchi]; 
 
        forAll(pTb, facei) 
        { 
            pTb[facei] = 1592; //set burned temperature 
        } 
    } 
 
    return tTb; 
} 
 
…… 
template<class BasicPsiThermo, class MixtureType> 
Foam::tmp<Foam::volScalarField> 
Foam::heheuPsiThermoBML_cornflour<BasicPsiThermo, MixtureType>::psib() const 
{ 
    tmp<volScalarField> tpsib 
    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "psib", 
                this->psi_.time().timeName(), 
                this->psi_.db(), 
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                IOobject::NO_READ, 
                IOobject::NO_WRITE, 
                false 
            ), 
            this->psi_.mesh(), 
            this->psi_.dimensions() 
        ) 
    ); 
 
    volScalarField& psib = tpsib.ref(); 
    scalarField& psibCells = psib.primitiveFieldRef(); 
    const volScalarField Tb_(Tb()); 
    const scalarField& TbCells = Tb_; 
    const scalarField& pCells = this->p_; 
 
    forAll(psibCells, celli) 
    { 
        psibCells[celli] = 
//            this->cellReactants(celli).psi(pCells[celli], TbCells[celli]);  bug, should use products 
properties 
            this->cellProducts(celli).psi(pCells[celli], TbCells[celli]); 
    } 
 
    volScalarField::Boundary& psibBf = psib.boundaryFieldRef(); 
 
    forAll(psibBf, patchi) 
    { 
        fvPatchScalarField& ppsib = psibBf[patchi]; 
 
        const fvPatchScalarField& pp = this->p_.boundaryField()[patchi]; 
        const fvPatchScalarField& pTb = Tb_.boundaryField()[patchi]; 
 
        forAll(ppsib, facei) 
        { 
//           ppsib[facei] = 
//               this->patchFaceReactants 
//               (patchi, facei).psi(pp[facei], pTb[facei]); 
            ppsib[facei] = 
                this->patchFaceProducts   //bug, should be products 
                (patchi, facei).psi(pp[facei], pTb[facei]); 
        } 
    } 
 
    return tpsib; 
} 
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Appendix VI. Calculation of laminar 

and turbulent viscosity and heat diffusivity 

Kinematic viscosity 𝜈 [m2/s] 

nu(), laminar kinematic viscosity, src/TurbulenceModels/ turbulenceModels/turbulenceModel.H 

nut(), turbulent kinematic viscosity 

nuEff(), effective kinematic viscosity, turbulent + laminar 

 

Dynamic viscosity 𝜇 [kg/m/s] 

mu(), laminar dynamic viscosity, $src/TurbulenceModels/turbulenceModels/turbulenceModel.H 

mut(), turbulence dynamic viscosity 

muEff(), effective dynamic viscosity, turbulent + laminar  

 

Thermal diffusivity 𝛼 [kg/m/s] 

Laminar thermal diffusivity, thermo.alpha()=thermo.mu()/Pr; see code 

src/thermophysicalModels/specie/transport/const/constTransportI.H; by changing 

constant/thermopysicalProperties, reactants or products mu and Pr, you can change the laminar 

dynamic and thermal viscosity. 

alphat(), turbulent thermal diffusivity for enthalpy, 

src/TurbulenceModels/compressible/EddyDiffusivity/EddyDiffusivity.H 

alphaEff() [kg/m/s], effective turbulent thermal diffusivity for enthalpy 

alphat_ = this->rho_*this->nut()/Prt_; src/TurbulenceModels/ 

compressible/EddyDiffusivity/EddyDiffusivity.C 
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Appendix VII. Case setup for 1-D 

“frozen” turbulence planar flame 

The case structure is as follows 

0.org  Allclean  Allrun  constant  system 
 

In 0.org/ folder, it contains files for setting up initial and boundary conditions 

alphat  b  epsilon  k  nut  p  Su  T  Tb  Tu  U  Xi 
 

Part of the files are shown here in order to save space. In 0.org/alphat file, 

    object      alphat; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -1 0 0 0 0]; 
 
 
internalField   uniform 0.013224; //for unburned, C_mu*rhou*k2/(Pr_t*epsilon) 
 
boundaryField 
{ 
    left 
    { 
        type            zeroGradient; 
    } 
    right 
    { 
        type            zeroGradient; 
    } 
    top 
    { 
        type            cyclic; 
    } 
    bottom 
    { 
        type            cyclic; 
    } 
    front 
    { 
        type            cyclic; 
    } 
    back 
    { 
        type            cyclic; 
    } 
} 

 

In 0.org/b file, 

    object      b; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 0 0 0 0]; 
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internalField   uniform 1; 
 
boundaryField 
{ 
    left 
    { 
        type            zeroGradient;  
    } 
    right 
    { 
        type            fixedValue; 
        value           uniform 1;  
    } 

 

In 0.org/epsilon file, 

    object      epsilon; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -3 0 0 0 0]; 
 
 
internalField   uniform 11.84; 
 
boundaryField 
{ 
    left 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
    right 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 

 

In 0.org/k file, 

    object      k; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
 
internalField   uniform 0.96; //0.96; 
 
boundaryField 
{ 
    left 
    { 
        type            fixedValue; 
        value           $internalField; 
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    } 
    right 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 

 

In 0.org/nut file, 

    object      nut; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -1 0 0 0 0]; 
 
 
internalField   uniform 0.007;  //C_mu*k2/epsilon 
 
boundaryField 
{ 
    left 
    { 
        type            zeroGradient; 
    } 
    right 
    { 
        type            zeroGradient; 
    }  

 

In 0.org/p file, 

    object      p; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -2 0 0 0 0]; 
 
 
internalField   uniform 110000; 
 
boundaryField 
{ 
    left 
    { 
        type            totalPressure; 
        p0              $internalField; 
    } 
    right 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 

 

In 0.org/Su file, 

    object      Su; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
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dimensions      [0 1 -1 0 0 0 0]; 
 
 
internalField   uniform 0.12; 
 
boundaryField 
{ 
    left 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
    right 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 

 

In 0.org/T file, 

    object      T; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 1 0 0 0]; 
 
 
internalField   uniform 328; 
 
boundaryField 
{ 
    left 
    { 
        type            zeroGradient;  
    } 
    right 
    { 
        type            fixedValue; 
        value           uniform 328; 
    } 

 

In 0.org/Tb file, 

    object      Tb; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 1 0 0 0]; 
 
 
internalField   uniform 1592; 
 
boundaryField 
{ 
    left 
    { 
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        type            fixedValue; 
        value           uniform 1592; 
    } 
    right 
    { 
        type            fixedValue; 
        value           uniform 1592; 
    } 

 

In 0.org/Tu file, 

    object      Tu; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 1 0 0 0]; 
 
 
internalField   uniform 328; 
 
boundaryField 
{ 
    left 
    { 
        type            fixedValue; 
        value           uniform 328; 
    } 
    right 
    { 
        type            fixedValue; 
        value           uniform 328; 
    } 

 

In 0.org/U file, 

    object      U; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
 
internalField   uniform (0 0 0); 
 
boundaryField 
{ 
    left 
    { 
        type            pressureInletOutletVelocity; 
        value           $internalField; 
    } 
    right 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
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In 0.org/Xi file, 

    object      Xi; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 0 0 0 0]; 
 
 
internalField   uniform 1; 
 
boundaryField 
{ 
    left 
    { 
        type            zeroGradient; 
    } 
    right 
    { 
        type            zeroGradient; 
    } 

 

In constant/ folder, it contains files for setting up the model 

combustionProperties thermophysicalProperties  turbulenceProperties 
 

In combustionProperties file 

    object      combustionProperties; 
} 
…… 
fuel            C6H7_88O4_98;  //cornflour 
 
Su              Su [0 1 -1 0 0 0 0] 0.12; //laminar burning velocity of cornflour of phi 0.77 
 
SuModel         unstrained; 
 
equivalenceRatio equivalenceRatio [0 0 0 0 0 0 0] 1.0; 
… 
 
XiModel         FSC; 
… 
// coeffeicient for FSC model, evaluating turbulent length scale 
CdCoef CdCoef [0 0 0 0 0 0 0] 0.37; 
 
// coeffeicient for FSC model, evaluating turbulent flame speed 
A A [0 0 0 0 0 0 0] 0.5; 
… 
//smooth ignition parameters 
W_0 W_0 [0 0 -1 0 0 0 0] 0;          //[1/s] 
t_0 t_0 [0 0 1 0 0 0 0] 0;          //[s] no effect at least a factor of 10 of time step 
sigma_r sigma_r [0 1 0 0 0 0 0] 1e-3;  //[m] at least a factor of 2 of mesh size 
sigma_t sigma_t [0 0 1 0 0 0 0] 5e-5;  //[s] no effect at least a factor of 2 of time step 

 

In thermophysicalProperties file 

    object      thermophysicalProperties; 
} 
…… 
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thermoType 
{ 
    type              heheuPsiThermoBML_cornflour; 
    mixture         homogeneousMixture; 
    transport       const; 
    thermo          hConst; 
    equationOfState perfectGas; 
    specie          specie; 
    energy          absoluteEnthalpy; 
} 
 
stoichiometricAirFuelMassRatio 
    stoichiometricAirFuelMassRatio [0 0 0 0 0 0 0] 4.67; 
 
reactants 
{ 
    specie 
    { 
        molWeight       32.76; //phi = 0.77 cornflour 
    } 
    thermodynamics 
    { 
 Cp            1007; 
                        Hf              0; 
    } 
    transport 
    { 
        mu              1.8e-5; 
        Pr              0.7; 
 
        As              1.67212e-06; 
        Ts              170.672; 
    } 
} 
 
products 
{ 
    specie 
    { 
        molWeight       27.15;  //phi = 0.77 cornstarch products 
    } 
    thermodynamics 
    { 
 Cp            1007; 
                        Hf              0; 
    } 
    transport 
    { 
        mu              4.6e-5; 
        Pr              0.7; 
 
        As              1.67212e-06; 
        Ts              170.672; 
    } 
} 
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In turbulenceProperties file 

    object      turbulenceProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
simulationType  RAS; 
 
RAS 
{ 
    RASModel        kEpsilon; 
 
    kEpsilonCoeffs 
    { 
        Prt 0.7; 
    } 
    turbulence      off; //on; 
 
    printCoeffs     on; 
} 

 

 

In system/ folder, it contains files for setting up the numerics 

blockMeshDict  controlDict       fvSchemes       residuals 
cBar0D1Dict     Residuals.txt 
cBar0D5Dict    flameFrontDict    fvSolution          setFieldsDict 

 

In blockMeshDict file, 

    object      blockMeshDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
scale   0.001; 
 
vertices 
( 
    (0   0   0)   //0 
    (100 0   0)   //1   
    (100 3   0)   //2 
    (0   3   0)   //3 
    (0   0   3)   //4 
    (100 0   3)   //5 
    (100 3   3)   //6 
    (0   3   3)   //7 
); 
 
blocks 
( 
    hex (0 1 2 3 4 5 6 7) (100 3 3) simpleGrading (1 1 1) 
); 
 
edges 
( 
); 
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boundary 
( 
    left 
    { 
        type patch; 
        faces 
        ( 
            (0 4 7 3) 
        ); 
    } 
    right 
    { 
        type patch; 
        faces 
        ( 
            (2 6 5 1) 
        ); 
    } 
    top 
    { 
        type cyclic; 
        neighbourPatch bottom; 
        faces 
        ( 
            (4 5 6 7) 
        ); 
    } 
    bottom 
    { 
        type cyclic; 
        neighbourPatch top; 
        faces 
        ( 
            (0 3 2 1) 
        ); 
    } 
    front 
    { 
        type cyclic; 
        neighbourPatch back; 
        faces 
        ( 
            (0 1 5 4) 
        ); 
    } 
    back 
    { 
        type cyclic; 
        neighbourPatch front; 
        faces 
        ( 
            (7 6 2 3) 
        ); 
    } 
); 
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mergePatchPairs 
( 
); 

 

In fvSchemes file, the second order accuracy numerical scheme are used as recommended by [36] 

    object      fvSchemes; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default         backward; 
} 
 
gradSchemes 
{ 
    default         cellLimited Gauss linear 1; 
    grad(U)         cellLimited Gauss linear 1; 
} 
 
divSchemes 
{ 
    default              none; 
    div(phi,U)           Gauss linear;  //linearUpwindV grad(U);  
    div(phid,p)          Gauss linear;  //limitedLinear 1; 
    div(phi,k)           Gauss linearUpwind default;  //limitedLinear 1; 
    div(phi,K)           Gauss linear;  //limitedLinear 1; 
    div(phi,epsilon)     Gauss linearUpwind default;  //limitedLinear 1; 
    div(phi,R)           Gauss linear;  //limitedLinear 1; 
    div(R)               Gauss linear;  //linear; 
    div(phiXi,Xi)        Gauss linear;  //limitedLinear 1; 
    div(phiXi,Su)        Gauss linear;  //limitedLinear 1; 
    div(phiSt,b)         Gauss limitedLinear01 1; 
    div(phi,ft_b_ha_hau) Gauss multivariateSelection 
    { 
        fu  limitedLinear01 1; 
        ft  limitedLinear01 1; 
        b   limitedLinear01 1; 
        ha  limitedLinear 1; 
        hau limitedLinear 1; 
    }; 
    div(U)               Gauss linear;  
    div((Su*n))          Gauss linear;  
    div((U+((Su*Xi)*n))) Gauss linear; 
    div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear; 
} 
 
laplacianSchemes 
{ 
    default         Gauss linear limited 1; //corrected; 
} 
 
interpolationSchemes 
{ 
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    default         linear; 
} 
 
snGradSchemes 
{ 
    default         limited 1; //orthogonal; //corrected; 
} 
 
 
// ************************************************************************* // 

 

In fvSolution file, 

    object      fvSolution; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
solvers 
{ 
    "(p|rho)" 
    { 
        solver          PCG; 
        preconditioner  DIC; 
        tolerance       1e-08; 
        relTol          0; 
        minIter         3; 
        maxIter         100; 
    } 
 
    "(p|rho)Final" 
    { 
        $p; 
        tolerance       1e-08; 
        relTol          0; 
    } 
 
    "(U|b|Su|Xi|ha|hau|k|epsilon)" 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-08; 
        relTol          0; 
        minIter         3; 
        maxIter         100; 
    } 
 
    "(U|b|Su|Xi|ha|hau|k|epsilon)Final" 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-08; 
        relTol          0; 
    } 
} 
 
PIMPLE  // setup for PISO algorithm 
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{ 
    momentumPredictor yes; 
    nOuterCorrectors 1; 
    nCorrectors     2; 
    nNonOrthogonalCorrectors 1; 
    turbOnFinalIterOnly true; 
 
} 

 

In residual file, tell OpenFOAM which residuals to be saved 

#includeEtc "caseDicts/postProcessing/numerical/residuals.cfg" 
 
fields (p U k epsilon b); 

 

In setFieldDict file, set left half of the tube as burned 

    object      setFieldsDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
defaultFieldValues 
( 
    volScalarFieldValue b 1 
    volScalarFieldValue T 328 
    volScalarFieldValue alphat 0.013224 
); 
 
regions 
( 
    boxToCell 
    { 
        box (0 0 0) (0.05 0.003 0.003); 
        fieldValues 
        ( 
            volScalarFieldValue b 0 
            volScalarFieldValue T 1592 
            volScalarFieldValue alphat 0.00225798 
        ); 
    } 
); 

 

In controlDict file, 

    object      controlDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
application     FSCFoam_cornflour; 
 
startFrom       startTime; 
 
startTime       0; //2e-3; 
 
stopAt          endTime; //noWriteNow; 
 
endTime         20e-3;//5e-2; 
 



59 

 

deltaT          1e-06; 
 
writeControl    timeStep; 
 
writeInterval   2e3; 
 
purgeWrite      0; 
 
writeFormat     ascii; 
 
writePrecision  10; 
 
writeCompression on; 
 
timeFormat      general; 
 
timePrecision   6; 
 
runTimeModifiable true; 
 
adjustTimeStep  no; 
 
maxCo           0.1; 
 
maxDeltaT       1; 
 
functions 
{ 
    #includeFunc  residuals 
    sample1 
    { 
        type        sets; 
        libs        ("libsampling.so"); 
        writeControl writeTime; 
        setFormat   raw; 
        sets 
        ( 
            line1 
            { 
                type        uniform; 
                axis        distance; 
 
                start       (0   0.0015 0.0015); 
                end         (0.1 0.0015 0.0015); 
                nPoints     1000; 
            } 
        ); 
        interpolationScheme cellPoint; 
        fields          (rho c cBar U); 
    } 
} 

 

The script Allrun for running the case is  

#!/bin/sh 
# reset the case 
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#echo "reset the case" 
#sed -i "s/turbulence      on/turbulence      off/g" constant/turbulenceProperties 
#sed -i "s/startTime       2e-4/startTime       0/g" system/controlDict  
#sed -i "s/endTime         5e-3/endTime         2e-4/g" system/controlDict  
#copy 0 dir 
cp -r 0.org/ 0/ 
wait 
echo "blockMesh" 
blockMesh > log.blockMesh & 
wait 
echo "renumberMesh" 
#increase the speed of linear solver by renumberMesh utility 
renumberMesh -overwrite > log.renumberMesh & 
wait 
echo "checkMesh" 
checkMesh > log.checkMesh & 
wait 
echo "set field" 
setFields > log.setFields & 
wait 
echo "run " 
FSCFoam_cornflour > log.FSCFoam_cornflour & 

 

The script Allclean for cleaning the case is  

rm -rf constant/polyMesh 
rm -rf postProcessing 
rm -rf VTK 
rm log* 
foamListTimes -rm 
rm -rf 0/ 
rm -rf dynamicCode 
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Appendix VIII. Case setup for 3-D 

“frozen” turbulent spherical flame 

The case structure is as follows 

0.org  Allclean_parallel  Allrun_parrallel  constant  system 
 

In 0.org/ folder, it contains files for setting up initial and boundary conditions 

alphat  b  epsilon  k  nut  p  Su  T  Tb  Tu  U  Xi 
 

Part of the files are shown here in order to save space. Only 0.org/alphat file is shown here, and the 

rest of files resembles the setup for 1-D planar flame case in Appendix VII. 

    object      alphat; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -1 0 0 0 0]; 
 
 
internalField   uniform 0.013224; //for unburned, C_mu*rhou*k2/(Pr_t*epsilon) 
 
boundaryField 
{ 
    left 
    { 
        type            symmetryPlane; 
    } 
    right 
    { 
        type            zeroGradient; 
    } 
    top 
    { 
        type            zeroGradient; 
    } 
    bottom 
    { 
        type            symmetryPlane; 
    } 
    front 
    { 
        type            symmetryPlane; 
    } 
    back 
    { 
        type            zeroGradient; 
    } 
} 

 

The rest of the setup of files resembles that of 1-D planar turbulent flame case, and will not be 

reported here. Only system/decomposeParDict is shown here. Note according to Ref.[37], scotch 

method for decomposing the domain is used. 

    object      decomposeParDict; 
} 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
numberOfSubdomains 16; 
 
method          scotch; 

 

The script Allrun_parallel for running the case in parallel is as follows 

#!/bin/sh 
 
# Source tutorial run functions 
. $WM_PROJECT_DIR/bin/tools/RunFunctions 
cp -r 0.org/ 0/ 
wait 
echo "create mesh" 
runApplication blockMesh 
echo "renumber mesh" 
#increase the speed of linear solver by renumberMesh utility 
runApplication renumberMesh -overwrite 
echo "check mesh" 
runApplication checkMesh 
echo "set field" 
runApplication setFields 
echo "decompose" 
# Decompose 
runApplication decomposePar 
echo "run" 
# Run 
runParallel `getApplication` 
echo "reconstruct" 
# Reconstruct 
runApplication reconstructPar 

 

The script Allclean_parallel for cleaning the case in parallel is as follows 

rm -rf constant/polyMesh 
rm -rf processor* 
rm -rf postProcessing 
rm log* 
foamListTimes -rm 
rm -rf VTK 
rm -rf dynamicCode 
rm -rf 0 

 

 

scale   0.001; 
 
box 140; 
meshSize 0.25; 
boxLayer 80; 
 
grading_factor_1 10;//grading factor for near filed 
grading_factor_2 6;//grading factor for far field 
vertices 
( 
    (0   0   0)   //0 
    ($box 0   0)   //1   
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    ($box $box   0)   //2 
    (0   $box   0)   //3 
    (0   0  $box)   //4 
    ($box 0   $box)   //5 
    ($box $box  $box)   //6 
    (0   $box  $box)   //7 
); 
 
blocks 
( 
hex (0 1 2 3 4 5 6 7) ($boxLayer $boxLayer $boxLayer) simpleGrading ( 
(  
  (0.5 0.875 $grading_factor_1)   //50% of distance and 87.5% of cells  
  (0.5 0.125 $grading_factor_2)  
) 
( 
  (0.5 0.875 $grading_factor_1)  
  (0.5 0.125 $grading_factor_2)  
) 
( 
  (0.5 0.875 $grading_factor_1)  
  (0.5 0.125 $grading_factor_2)  
)  
) 
); 
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Appendix IX. Implementation of an 

extra source term in the standard k-epsilon 

turbulence model 

The OpenFOAM implementation of standard 𝑘-𝜀 turbulence model involves the following balance 

equations  

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) = 𝛻. [�̅�𝐷𝑘𝛻�̃�] + 𝐺𝑘 −

2

3
�̅�(𝛻. �̃�)�̃� + 𝑆𝑘 − �̅�𝜀̃  (Appendix IX.1) 

𝜕�̅�𝜀̃

𝜕𝑡
+ 𝛻. (�̅��̃�𝜀̃) = 𝛻. [�̅�𝐷𝜀𝛻𝜀̃] +

𝐶1𝐺𝑘𝜀̃

�̃�
− (

2

3
𝐶1 − 𝐶3,𝑅𝐷𝑇) �̅�(𝛻. �̃�)𝜀̃ − 𝐶2�̅�

𝜀̃2

�̃�
+ 𝑆𝜀 

 (Appendix IX.2) 

To simulate flames expanding from the centre of a fan-stirred bomb, an extra source term �̅�𝜀0 is 

added to mimic the flux of turbulent energy from the fans to the centre of the vessel [31] 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃��̃�) = 𝛻. [�̅�𝐷𝑘𝛻�̃�] + 𝐺𝑘 −

2

3
�̅�(𝛻. �̃�)�̃� + 𝑆𝑘 − �̅�𝜀̃ + �̅�𝜀0  (Appendix IX.3) 

 

𝜕�̅��̃�

𝜕𝑡
+ 𝛻. (�̅��̃�𝜀̃) = 𝛻. [�̅�𝐷𝜀𝛻𝜀̃] +

𝐶1𝐺𝑘�̃�

�̃�
− (

2

3
𝐶1 − 𝐶3,𝑅𝐷𝑇) �̅�(𝛻. �̃�)𝜀̃ −

𝐶2
�̃�

�̃�
(�̅�𝜀̃ − �̅�𝜀0) + 𝑆𝜀  

 (Appendix IX.4) 

Since the TurbulenceModels is a templated class (due to the first capital letter), the implementation 

of new turbulence model is different from the traditional way. A file, makeTurbModel.C, is created in 

$WM_PROJECT_USER_DIR/src/TurbulenceModels/turbulenceModels/ with the contents as follows 

#include "CompressibleTurbulenceModel.H" 
#include "compressibleTransportModel.H" 
#include "fluidThermo.H" 
#include "addToRunTimeSelectionTable.H" 
#include "makeTurbulenceModel.H" 
 
#include "ThermalDiffusivity.H" 
#include "EddyDiffusivity.H" 
 
#include "laminarModel.H" 
#include "RASModel.H" 
#include "LESModel.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
#define createBaseTurbulenceModel(                                                         \ 
    Alpha, Rho, baseModel, BaseModel, TDModel, Transport)                 \ 
                                                                                                                           \ 
    namespace Foam                                                                                        \ 
    {                                                                                                                      \ 
        typedef TDModel<BaseModel<Transport>>                                      \ 
            Transport##BaseModel;                                                                    \ 
        typedef RASModel<EddyDiffusivity<Transport##BaseModel>>     \ 
            RAS##Transport##BaseModel;                                                         \ 
        typedef LESModel<EddyDiffusivity<Transport##BaseModel>>      \ 
            LES##Transport##BaseModel;                                                          \ 
    } 
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createBaseTurbulenceModel 
( 
    geometricOneField, 
    volScalarField, 
    compressibleTurbulenceModel, 
    CompressibleTurbulenceModel, 
    ThermalDiffusivity, 
    fluidThermo 
); 
 
#define makeRASModel(Type)                                                        \ 
    makeTemplatedTurbulenceModel                                             \ 
    (fluidThermoCompressibleTurbulenceModel, RAS, Type) 
 
#define makeLESModel(Type)                                                        \ 
    makeTemplatedTurbulenceModel                                             \ 
    (fluidThermoCompressibleTurbulenceModel, LES, Type) 
 
#include "mykEpsilon.H" 
makeRASModel(mykEpsilon); 

Take a copy of standard k-epsilon turbulence model into the directory 

$WM_PROJECT_USER_DIR/src/TurbulenceModels/turbulenceModels/RAS/mykEpsilon. Rename the 

files from kEpsilon to mykEpsilon. Make the changes in the mykEpsilon.C file for including the source 

terms as follows 

…… 
    //read in epsilon0_ from turbulenceProperties dictionary 
    IOdictionary turbulenceProperties 
    ( 
        IOobject 
        ( 
            "turbulenceProperties",  
            this->runTime_.constant(), 
            this->mesh_, 
            IOobject::MUST_READ_IF_MODIFIED, 
            IOobject::NO_WRITE 
        ) 
); 
dimensionedScalar epsilon0_("epsilon0_", dimensionSet(0,2,-3,0,0,0,0), turbulenceProperties); 
    // calculate epsilon0 for including extra source term 
volScalarField epsilon0=epsilon_-epsilon0_;  
…… 
    // Dissipation equation 
    tmp<fvScalarMatrix> epsEqn 
    ( 
        fvm::ddt(alpha, rho, epsilon_) 
      + fvm::div(alphaRhoPhi, epsilon_) 
      - fvm::laplacian(alpha*rho*DepsilonEff(), epsilon_) 
     == 
        C1_*alpha()*rho()*G*epsilon_()/k_() 
      - fvm::SuSp(((2.0/3.0)*C1_ - C3_)*alpha()*rho()*divU, epsilon_) 
//      - fvm::Sp(C2_*alpha()*rho()*epsilon_()/k_(), epsilon_) 
      - fvm::SuSp(C2_*alpha()*rho()*epsilon0/k_(), epsilon_)//extra source term 
      + epsilonSource() 
      + fvOptions(alpha, rho, epsilon_) 
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    ); 
…… 
    // Turbulent kinetic energy equation 
    tmp<fvScalarMatrix> kEqn 
    ( 
        fvm::ddt(alpha, rho, k_) 
      + fvm::div(alphaRhoPhi, k_) 
      - fvm::laplacian(alpha*rho*DkEff(), k_) 
     == 
        alpha()*rho()*G 
      - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, k_) 
//      - fvm::Sp(alpha()*rho()*epsilon_()/k_(), k_) 
      - fvm::SuSp(alpha()*rho()*epsilon0()/k_(), k_)  //extra source term 
      + kSource() 
      + fvOptions(alpha, rho, k_) 
    ); 

The Make/files and Make/options files located in 

$WM_RPOJECT_USER_DIR/TurbulenceModels/turbulenceModels are shown as follows 

makeTurbModel.C 
 
LIB = $(FOAM_USER_LIBBIN)/libmyTurbulenceModels 

 

EXE_INC = \ 
    -I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \ 
    -I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \ 
    -I$(LIB_SRC)/transportModels/compressible/lnInclude \ 
    -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \ 
    -I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \ 
    -I$(LIB_SRC)/thermophysicalModels/solidThermo/lnInclude \ 
    -I$(LIB_SRC)/thermophysicalModels/solidSpecie/lnInclude \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude \ 
    -I$(LIB_SRC)/meshTools/lnInclude 
 
LIB_LIBS = \ 
    -lcompressibleTurbulenceModels \ 
    -lcompressibleTransportModels \ 
    -lfluidThermophysicalModels \ 
    -lsolidThermo \ 
    -lsolidSpecie \ 
    -lturbulenceModels \ 
    -lspecie \ 
    -lfiniteVolume \ 
    -lmeshTools 

 

 

 


