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ABSTRACT
A method for implementing cut in parallel execution of Prolog is presented. It takes
advantages of the efficient implementation of cut in the sequential WAM. It restricts the
parallelism, however, it is simple and adds a small extra overhead over the sequential
scheme. The method can be used in parallel execution of Prolog on shared and nonshared
memory multiprocessors.




1. Introduction

Most practical Prolog programs contain cuts. The cut is often used to increase the
efficiency of programs and to prevent the consideration of alternate solutions. The most
common semantics of cut (known as the asymmetric cur) is as follows.

The cut operation commits all choices made since the predicate in which the cut occurs was
invoked, and causes other alternatives to be discarded.

A discussion on different operational semantics for cuts and different implementation
approaches used on the sequential WAM [Warr83] is found in [Carl87].

In the sequential WAM, only one processor works on all alternative clauses (branches).
The branches are selected from left-to-right in depth-first manner. The cut in the leftmost
branch of a choice point (CP) is always encountered before the cuts in the right branches of
the same CP. So, it is simple and efficient to find and to discard the right branches.

In Or-parallel execution of Prolog, alternative branches with cut of the same predicate can
be processed by different processors. In this case, it is possible for the processor working
on a non-leftmost branch with cut to encounter cut before the processor working on the
leftmost branch with cut. The system should eventually cut away all branches right to the
leftmost branch with cut.

A parallel implementation of cut based on the above approach allows high parallelism.
However, it requires a mechanism for keeping track of processors working on different
branches in order to stop those processors working on the branches to the right of the
leftmost branch with cut. Such a mechanism is expected to be much more expensive in
comparison with the one used in the sequential implementation. The other disadvantage of
the above approach is that processors can be utilised badly; unneeded work may be
assigned to idle processors instead of the needed work.

In this paper we present a scheme for parallel implementation of cut taking advantage of the
efficient sequential implementation of cut in WAM [Carl87]. Our scheme restricts the
parallelism. However, it is simple and efficient - it has a small extra overhead over the
sequential scheme. It also avoids bad utilisation of processors. We assume herein the
reader is familiar with WAM [Warr83] and the implementation of cut in WAM [Moss86,
Carl87].

The structure of this paper is as follows. The next section introduces our idea of a parallel
implementation of the asymmetric cut. Section 3 introduces our scheme. Section 4 gives an
example of compiling predicates with cut, and discusses the problems of creating two CP
frames for one predicate and the solutions. Section 5 discusses possible optimizations.

2. Basic Idea

Suppose that the clauses in a given predicate p contain at least one cut. These clauses are
partitioned according to the textual order into groups G1, G2, ... Gn according to the
following rule [Ali86]:

"each group is either a set of clauses in which none of the clauses contains cut, or a set of
clauses in which each clause contains at least one cut, where no two contiguous groups

may form one group.”

Let us first consider the case in which G1, G3, ... have the clauses which contain cuts,
and G2, G4, ... have the clauses which do not contain cut.

i)  When a call is made to p, the clauses of p will be executed sequentially until either
the last cut in any clause of G1 is executed, or the first clause of G2 is about to be



executed.

ii) In the latter case of i), the clauses of G2 can be executed in parallel while the
remaining clauses (in G3, G4, ... Gn) will be executed sequentially until either the
last cut in any clause of G3 is executed, or the first clause of G4 is about to be
executed, and so on.

In the other case G1, G3, ... have clauses containing no cut. When a call is made to p, we
get a situation similar to ii) where G2 is replaced by G1, G3 by G2, and G4 by G3. That
is, the clauses of G1 can be executed in parallel while clauses in G2, G3, ... will be
executed sequentially until either the last cut in any clause of G2 is executed or the first
clause of G3 is about to be executed.

That is, a subtree may be processed in sequential mode or in parallel mode depending on if
its current leftmost branch contains cut or not respectively.

Example 1:
Assume a predicate p in the following structure:

1) - q.

P
@ p:-ql.
3 P - q2.
) p--a3, Ll s
5) p - qd.
(6) p:- 1, g5, v.
¢ P :-q6, |, u

P is partitioned into 4 clause groups:

G1 has clauses (1), (2) and (3),
G2 has (4),

G3 has (5), and

G4 has (6) and (7).

When p is invoked, the three clauses (1), (2) and (3) can be processed in parallel, and the
remaining clauses (4) - (7) will be executed sequentially until either (a) passing through the
last cut in clause (4), or (b) failing before passing the first cut in clause (4). That is, four
processors can work in parallel: one for each of the first three clauses and the fourth
processor for the remaining clauses (see Figure 1).

In case (a), if s has the following predicate:

(8) S - T.
© s :-rl.
(10) s - 1,2
(1) s 13, 1,4, 1, 15,

The clauses (8) and (9) can be processed in parallel, and clauses (10) and (11) will be
executed sequentially but in parallel with (8) and (9).

In case (b), clauses (6) and (7) will be processed sequentially but in parallel with clause

(5).
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Figure 1: Assigning clauses to processors of Example 1

Pr r_in n itching rules:

Let us assume a Prolog program is executed by a system having a number of processors,
with shared or nonshared memory. Each of these processors is either in the sequential
mode or in the parallel mode. Initially, all processors are in the parallel mode. Processors
switch from one mode to the other according to the following rules:

- A processor switches from the parallel mode to the sequential mode when it starts
processing the first clause of a clause group G containing cut.

- A processor switches from the sequential mode to the parallel mode when either

the last cut in one clause of the group G is encountered, or all clauses of the group
G fail.

We notice that a processor may have a number of CPs just before switching to the
sequential mode. Processors, in both modes, can split up untried choices of CPs and
assign them to other processors according to the following rules:

- A processor in the sequential mode can split up all untried choices it had before the
predicate with G was invoked.

- A processor in the parallel mode can split up all untried choices it has.

- When a CP having an untried branch with cut splits up, the leftmost branch with
cut along with the branches to the right are assigned to one processor.

In the next section we give a mechanism that allows each processor to switch from one

mode to the other according to the above rules and to identify alternative choices that can be
split up.



3. A Parallel Scheme

Since our goal is to take advantage of the efficient sequential implementation of cut in
WAM, we investigate, in Section 3.1, one of the sequential schemes and discuss why it is
not enough for supporting a parallel implementation of cut presented in Section 2. Then,
we discuss possible modifications to the sequential scheme. In Section 3.2, we introduce
our scheme.

3.1. Preliminaries

We take a scheme presented by Carlsson [Carl87], which uses a separate stack for holding
the CP frames. (The idea of this scheme was originally proposed by Venken [Venk84].) In
this scheme, an instruction

choice A,: A, :=B;
where A,, is an argument register and B is a WAM register pointing to the last CP frame,

begins the code for each predicate using cut. An instruction

cutVy: B :=V,; tidyrail;
where the argument Vn contains the saved value of B,

is used for each occurrence of cut.
This mechanism is not enough for parallel implementation of cut for the following reasons:
1. It does not distinguish between the last cut and a non-last cut in a clause.

2. Since no CP frame is created for a single clause predicate, the sequential scheme can
not detect the last cut in the first clause using cut. To illustrate this problem let us take an
example with nested cuts. Assume the B register has the value B' when p(a, b) is invoked
in the following code segment, and the current processor is in the parallel mode:

.., pa, b), ..

p(X, Y) :- s(X), 1, q(Y).
s(X) - 1(X), 1, q1(X).
1X) :- v(X), !, 02(X).

ql(@).q2(a). v(a).

The current processor switches to the sequential mode at the beginning of execution of the
clause p/2. The processor should switch back to the parallel mode when cut in the clause
p/2 is encountered. Since no CP frame is created for any of the above clauses, B = B' at
the beginning execution of any of the first three clauses and when any of the three cuts is
encountered. How does the system distinguish between the last cut in the clause p/2, s/1,
and 1/1? So, the sequential cut mechanism should be modified in order to detect the last cut
in the first clause (in this example, cut in the clause p/2).

One solution is to create a CP frame for each predicate using cut even for a single clause
predicate, and to add a new instruction for last cut. When the first clause using cut is about
to be processed, the respective CP frame is marked and an extra flag set ON indicating that
the processor is in the sequential mode. Each last cut removes its respective CP frame and
the recent ones. When the marked CP is removed, the processor switches to the parallel
mode by resetting the flag OFF. In this solution, when the last clause of a predicate is
selected and that clause uses cut, the respective CP frame can not be removed before
passing through the last cut in the clause or failing on that clause.



The disadvantage of this solution is that the extra CP frames require large space and
processing time overhead.

Another possible solution for detecting the last cut in the first clause is as follows. Assume
that each clause invocation creates an environment frame (ENV frame). When the first
clause with cut is processed, the respective ENV frame is marked and the current processor
switches to the sequential mode. On processing a last cut, the current ENV frame is tested.
If it is marked, so it corresponds to the first clause with cut and the processor switches to
the parallel mode. If it is not marked, the current last cut does not correspond to the first
clause with cut.

The main disadvantage of the second solution is that in the efficient implementation of
WAM, an ENV frame is created only when there are at least two goals in the clause body.
So, it is not efficient to create an ENV frame for clauses that have one or no goal in the
body.

3.2. The Scheme

In our scheme herein, the CP-stack (and of course the trail stack) is used as in the first
solution discussed in Section 3.1. But, only one word, called mark (M) frame, is
created in the CP-stack for each predicate using cut. When an M frame is created, a pointer
to the last M frame is saved in it. Also, when a CP frame is created, a pointer to the last CP
frame is saved in it. That is, in the CP-stack there are two chains of different frames: one
for M frames and the other for CP frames.

An M frame is removed from the CP-stack when either all clauses of the predicate are
processed, or when the last cut in a clause is encountered. CP frames are created and
removed with the same sequential mechanism. We distinguish between CPs for predicates
using cut and for not using cut by marking those corresponding to the former ones. This
distinction is necessary to recognize two different situations that generate an M frame and
then a CP frame. (The first situation occurs, when a single clause predicate with cut
invokes a multi-clause predicate with no cut. The second situation corresponds to a
multi-clause predicate using cut.)

We assume that each CP-stack has three registers:

B: points to the last CP frame (the same as in WAM),
T: points to the last M frame, and
S:  points to the M frame corresponding to the first clause using cut.

Initially, B := § :=T := Bottom of the CP-stack (called Low). The S register is also used to
indicate the current execution mode: when S > Low, the current processor is in the
sequential mode, otherwise in the parallel mode. Figure 2 shows a snapshot of the
CP-stack and the associated registers.

We assume also that the compiler generates an instruction called mark that begins code of
every clause with cut. When a mark instruction is executed and the current processor is in
the parallel mode, the processor switches to the sequential mode by copying T into S. It is
always true that when a mark instruction is executed T > Low. This is because (1) on each
invocation of a predicate using cut, an M frame is created and T points to it, and (2) the
respective mark instructions are executed after creation of the M frame.
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Figure 2: A snapshot of the CP-stack

Now, we can introduce our scheme as follows.

(a) Initially:
B, T and S, point to the bottom of the CP-stack i.e.,

B:=T:=8:=Lo

(b) On invoking a predicate using cut:

For each invocation of a predicate using cut, an M frame is created in the CP-stack. We
modify the semantics of choice instruction as follows. It first creates an M frame on the
CP-stack and saves the register T in it. Then, a pointer to the created M frame (i.e. the new
value of register T) is copied into the argument register A - That is, the new semantics of

choice instruction is as follows.

choice A ;:
T := create an M frame on the top of CP-stack and save in it the register T

Ay:=T

(¢) On invoking a clause with cut: ,

An instruction mark begins the code of every clause with cut. This instruction switches
the current processor to the sequential mode if it is not already in this mode. This is done
by copying T into S only if S = Low

(As mentioned above, it is always true that, "there is a choice instruction which is executed
before a mark instruction”. Therefore, when a mark instruction is executed, T must be
greater than Low.) The semantics of mark instruction is as follows.

mark:
IfS=Low ThenS :=T



(d) On creation of a new CP frame:

In the standard implementation of Prolog, the try label instruction creates a new CP
frame in the CP-stack, saves the current state in it and executes the code at address /abel. In
our implementation, we use the try instruction with the above semantics for predicates with
no cut. A new instruction called mtry is used for predicates with cut. The semantics of the
mtry instruction is as follows. It first tests the processor mode. If the processor is in the
parallel mode (i.e. S = Low) and the first alternative clause uses cut (mtry + mark), the
processor switches to the sequential mode by copying T into S. Otherwise, the semantics
of the mtry is the same as in WAM but the created CP frame is marked. In the SICStus
implementation, there is no need to save the current B in the created CP frame, but in our
implementation we need that.

The try instruction is defined by

try label:
B := create a CP frame on the top of CP-stack and save in it the current state including B,
process the first alternative clause of the created CP frame,

and the mtry instruction is defined by

mtry label:
IfS = low
Then
If *label = mark {*x means contents of memory address x}
Then S :=T

= create and mark a CP frame on the top of CP-stack and save in it the current state including B,
process the first alternative clause of the created CP frame.

(e) Non-last cut:

Each cur operator, which does not correspond to a last cut in a clause, will be executed
as follows. First it works the same as in the sequential WAM with restoring T instead of
B. Second all CP frames created after invoking the predicate in which the cut occurs are
discarded. That is,

cut V..
T:i=V,
tidy trail
IfT<B
Then B := the first CP frame below T

(f) Last cut:

We assume the compiler generates an instruction, called /astcut, which corresponds to
the last cut in a clause. When this instruction is executed, it first works as in (e), then it
tests if T and S point to the same M frame. If so, the current processor leaves the
sequential mode by assigning Low to S. Last it removes the current M frame. The
semantics of lastcut is as follows.

lastcut V;
The same as in (e).

If S =T Then S := Low
T = *T

(g) On failure:

If there are no more alternative clauses, the current processor terminates and looks for a
new job from another processor. If there is an alternative clause (i.e. B > Low), the
following actions will be performed:



- All M frames more recent than the current CP will be removed.

- If the processor is in the parallel mode (i.e. S = Low) and the next alternative
clause uses cut, the processor switches to the sequential mode (by copying T into
S) and the next alternative is taken.

- If the processor is in the sequential mode and the new T > S, the next alternative is
taken. (Whatever the next branch is the processor remains in the sequential mode.)

- If the processor is in the sequential mode and S > T and the next alternative clause
uses cut, the next alternative is taken and T is copied into S. That is, some M
frames are removed from the CP-stack.

- If the processor is in the sequential mode and S > T and the next alternative clause
does not use cut, the processor switches to the parallel mode and the next
alternative is taken.

- If the processor is in the sequential mode and S = T and the current CP frame is
not marked, the next alternative is taken.

- If the processor is in the sequential mode and S = T and the next alternative clause
does not use cut and the current CP frame is marked, the processor switches to the
parallel mode and the next alternative is taken.

The semantics of failure is as follows.

IfB =Low
Then terminate
Else
If B <T Then T := the first M frame below B
IfS =Low )
Then {B>Low and S = [Low)
If next alternative containing cut (i.e. retry+mark or trust+mark)
Then § ;=T
Else {B>Low and S > Low}
IfT<S
Then {B>Low and S >Low and T < S}
If next alternative containing cut (j.e. retry+mark or trust+mark)
Then S :=T
Else S := Low
Else {B>Low and S >Low and T 2 S}
IfS=T
Then {B>Low and S>Low and T=S§)}
If marked(B) and next alternative with no cut
Then S := Low
process the next alternative clause

We notice that, when the taken alternative is the last one of the CP (i.e. trust instruction),
the CP frame is removed from the stack exactly the same as in WAM.

(h) On splitting:

If the current processor is in the parallel mode (i.e. S = Low), all CP frames in the
CP-stack can be split up. Otherwise, CP frames below S only can be split up. These CP
frames can be split up and assigned to the other processors in any order. The only
necessary condition is that when a CP with cut (marked CP) splits up, the leftmost branch
with cut along with the right branches assign to one processor.

One possible scheme for assigning alternative branches of CP frames, that can be split up,
to the other processors is as follows.

0. Select a CP frame c.

1. If the next alternative clause of ¢ does not use cut, it is assigned to another
processor.



2. If the next alternative clause uses cut, the alternative and the remaining alternatives
of ¢ are assigned to another processor along with the respective M frame. (In this
case, pointers to the M frame will be updated.)

3. If all alternative clauses at c are assigned to other processors, another CP frame is
taken and split up exactly the same as in 1 and 2.

4. Step 3 is repeated until either no more CP frames can be split up, or no processor
is idle.

If it is possible to distinguish between parallel and sequential CP frames as in ANLWAM
[Over86], the parallel CP frames in the part of the CP-stack, that can split up, split up and
assign to the other processors.

4. On Compiling Indexing and Cut

This section gives an example of compiling a predicate with cut. Then it discusses the
problem of creating more than one CP frame for one predicate when using the two-level
indexing and disjunctions.

In WAM, nine instructions are used for clause indexin g

try L
retry L
trust L

try_me_else L
retry_me_else L
trust_me_else_fail

switch_on_term Lv, Lc, LI, Ls
switch_on_constant N, Table.
switch_on_structure N, Table

where the first six instructions are used for managing choicepoints and the last three for
discriminating on the first argument.

In the scheme presented in Section 3, the first three instructions for managing choicepoints
are assumed. It is easy to extend our scheme to include also the instructions try me_else,
retry_me_else and trust_me_else_fail (the next instruction to be tested is the one below the
current instruction). However, in some WAM implementations as in SICStus [Carl86], the
first three indexing instructions are only used for managing choicépoints, since the
instructions try_me_else, retry_me_else and trust_me_else_fail can be replaced by try/

retryl trust.

The following example shows the generated code for a predicate p of four clauses when
the third clause contains cut.

p: choice A, {each predicate with cut begins with choice instruction)
mtry C1 {the mtry instruction is used to create a marked CP frame}
retry C2
retry C3
trust C4

Cl: <code for the first clause>

C2: <code for the second clause>

C3: mark {each clause with cut begins with mark instruction)
<code for the third clause>

C4: <code for the fourth clauses>

10



If the clause C3 had three cuts, it would compile to:

C3: mark
cut Va {first cut in a clause}
cut Va ‘ {second cut in a clause)
i;s.tcut Va {last cut in a clause}

In the remaining part of this section we discuss problems with indexing and creating more
than one CP for one predicate.

In our scheme presented in Section 3, we assumed that at most one CP frame for each
predicate, and that once a CP is established, a simple test will be done in order to know the
next alternative clause using cut or not. For example, on backtracking if the next alternative
from the current CP is not the last one (i.e. retry L instruction), we do the following simple
test:

Is *L. = mark
in order to know the next alternative uses cut or not.

We do not assume more than one CP frame for one predicate (two-level indexing scheme)
for the following reasons:

L. If two CP frames are created for one predicate with cut, these two frames should be
treated as one unit when such frames split up. A problem arises when one of such frames
(the innermost) has cut and is assigned to another processor. In this case, when the cut is

executed, our mechanism can not remove alternatives that reside in another processor's
CP-stack.

2. The second problem with the two-level indexing is the possibility of performing a large
test operation in order to know the next alternative uses cut or not. For instance, If the
outer CP frame is created and the next instruction (at *L) is one of the switch instructions.
In this case, the first argument should be tested, then the target instruction, and possibly
more instructions should be investigated.

In one-level indexing scheme by Carlsson [Carl87], there is at most one CP created for any
predicate. It discriminates first on the type of the first argument, and second, when
appropriate, on its principle functor. A CP is then needed only for non-singleton sets. In
Carlsson's scheme, switching instructions are used only before establishing a CP. (The
switching instructions: switch_on_constant and switch_on_structure are slightly
modified.) So, our scheme in Section 3, works fine with the one-level indexing scheme.

The other source, that may generate two-level indexing, is disjunctions in a predicate. A
problem arises only when cuts are used inside disjunctions, as in the following example:

PX) - g(X), (x(X), !, s(X)); (X)), u(X).
p(X) :- v(X).

In general, two different operational semantics are used for such cuts:

11



1. A cut commits the innermost disjunction in which it occurs.
2. A cut commits the entire predicate in which it occurs.

Our scheme works with the first semantics (and not with the second) by transforming each
innermost disjunction to a new predicate. The above p/1 predicate transforms to

PX) - ¢(X), p'(X), u(X).
p(X) :- v(X).

pP'X) :- 1(X), !, s(X).
p'X) :- «(X).

Carlsson [Carl87] and O'’Keefe [O'Kee85] pointed out that constructs with cuts inside
disjunctions represent doubtful programming style.

S. Optimization

In this section we discuss a possible optimization to our scheme. None of the operations:
cut, lastcut, mark, mtry, or choice is used in any predicate not using cut. However, some
extra work on backtracking, will be performed even for programs not using cut. The
following three tests are performed before taking the next alternative branch:

OHIEB<T {the result of this test is always false for programs with no cut}
(2)IfS =Low {the result of this test is always true for programs with no cut)
(3) If next alternative using cut  (the result of this test is always false for programs with no cut)

For programs with no cut, no M frame is created and T is always equal to Low. So, one
possible optimization that requires only one test on backtracking is as follows. T first is
checked against Low, if they are equal, then there is no M frame in the CP-stack and B
points to the top of the CP-stack. The next alternative clause is just taken without any
further test.

As long as no M frame is created (i.e. T = Low), this optimization reduces the extra work.
- However, once an M frame is created on the CP-stack (i.e. T > Low), this extra test is
added on backtracking.

Marked lines with "" at the left in the following code are the added parts to the previous
definitions in Section 3. On failure is modified to

IfB=Low
Then terminate
Else
. IfT =Low
° Then process the next alternative clause
° Else
If B < T Then T := the first M frame below B
Exactly the same remaining code as in Section 3 (g)

12



6. Conclusions and Discussions

We have presented a parallel scheme for implementing the asymmetric cut in parallel
execution of Prolog on either shared [Over86, Ciep87, Warr86], or nonshared memory
[Ali86] architectures. The scheme takes advantages of the efficient implementation of cut in
the sequential WAM. Three new instructions (lastcut, mtry and mark) are added to WAM
and operations that manage choicepoints are modified. This modification adds a small extra
overhead over the sequential WAM. The scheme works with one-level indexing [Carl87].
For cuts inside disjunctions, our scheme supports the operational semantics of such a cut
as follows. A cut commits the innermost disjunction in which it occurs.

The scheme restricts the parallelism, which is in some situations good and bad in others. It
is good when many small tests are needed and many or large branches will be discarded. It
is bad when we get a situation in which a large tree is enforced to be executed sequentially
due to cut, and one of the right branches has a needed solution.

A detailed experimental study of different ways on practical large programs is required in
order to conclude which implementation method gives better overall performance of the
system; a simple one that restricts parallelism with small overhead as ours, or a general
sophisticated one that allows more, or all possible parallelism with more memory space
and processing time overhead.
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