OR Parallel Execution of Horn Clause Programs
Based on WAM and Shared Control Information
by
Khayri A M Ali

SICS R88010
Research Report
ISSN 0283-3638

4

When the system starts up, one processor say pl will be in the Computation mode and all the
other processors will be in the Recomputation mode to follow pl. When a user query is read, all
processors in the system start in parallel processing the query. When p1 gets the first choice
point, it creates a Split frame, takes the first branch for processing and leaves the other branches
on the frame. When any of the other processors gets the first choice point, it has to wait until p1
has created the respective Split frame, then it takes one of the untried branches, if there is any.
Processors that have not got untried branches will follow p1 (or one of the other processors that
took a branch) to the next choice point.

Another possible way to start up the system is to use another principle in the start phase. For
instance, all processors can start processing the top level query in parallel and the one, which
gets the first choice point first in time, creates the respective Split frame. Processors that get the
first choice point later on take one of the untried branches, if there is any, or follow one of the
processors that have got a branch of that Split frame. That is, all processors start in the
Computation mode until the first choice point is reached. Then processors that do not find
untried branches will switch to the Recomputation mode.

9. Reporting Results
Only processors in the Computation mode report the results.

10. Modifications to WAM Instructions

Information in the global memory is shared between all processors in the system. Some
operations require mutual exclusion of more than one global object. A simple implementation for
a system with a few tens of processors is to allow one processor at a time to manipulate that
information. Here we assume one global lock for the all shared information. The underlaying
hardware should support efficient locking operations on shared memory.

As mentioned above each processor can be either in the Computation mode, or in the
Recomputation mode. The semantics of each of the four operations: TRY, RETRY, TRUST,
and FAIL depends of the processor mode. In the following we describe the semantics of TRY
and FAIL operations in the Computation and Recomputation modes. RETRY and TRUST
operations are executed within FAIL.

TRY_ Instruction:
When a processor is in the Computation mode, it executes the TRY instruction as follows.

Lock

Create a SF of reference s

set RC, NUB and the respective bit of the current processor on the SF
Push (1,s) in the HP-stack

Unlock

Set up a local CP

Process the first branch

When a processor is in the Recomputation mode, it executes the TRY instruction according to
the following actions. Assume a processor p is following another processor q and the depth of
p's HP-stack is i.

- p stops itself when either p's Stop flag is "On" or it reaches a choice point at which the
processor ¢ has backtracked from and q in the Recomputation mode. Then it looks for a
processor in the computation mode to follow .

- If p is following q and p reaches the next CP before g, p has to wait until q reaches that point.

- If the next CP is processed by q only and q is processing the last branch of the CP, p
processes that branch of the CP without creating a local CP frame.

- If the next CP has untried branches, p takes one of them and creates a local CP frame.

- If the next CP has no untried branches and there are more than one processor processing
different branches of that CP, p creates a local CP frame and follows q.

The above actions can be specified as follows.

Lock
If (q in the Recomputation mode And q's HP-stack depth < i) Or p's Stop flag is "On"
Then
Reset the respective bit in the g's Recomputation vector
Reset p's Stop flag (if it is On)
Loop
While the SFA field of the top element of the HP-stack = NOSF DO pop
1f the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field according to the selected branch
Reset the state from CP
process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit and decrement RC field of the SF
Deallocate the SFif RC =0
Unlock
Remove the CP
lock
Else
If q's HP-stack depth =i
Then Unlock, try again later on
Else
If SFA field of the i+1th element of q's HP-stack = NOSF
Then
Push the i+1th element of g's HP-stack in the p's HP-stack
Unlock
process the branch without creating a local CP
Else
Add itself and inc. RC in the SF referred by the i+1th element of q's HP-stack
If there is untried branches
Then
Update NUB field of the SF
Push the i+1th element of q's HP-s. with the selected branch in p's HP-stack
Switch to Computation mode
Remove itself from gq's Recomputation vector
Unlock
Create a local CP
Process the selected branch
Else
Push the i+1th element of q's HP-stack in the p's HP-stack
Unlock
Create a local CP
Process the pushed branch

FATL Instruction

A processor p in the Recomputation mode can execute the FAIL instruction only in the following
case: when p is following say g, both p and q processing the same branch, and p fails before q.
(P, otherwise, processes a part of the successful path processed by q.) In this case, p performs
the following actions.

- P stop following g.

- P backtracks to the latest SF that refers to a processor in the Computation mode which is not q.
P follows that processor.

The above actions can be specified as follows.

Lock
Remove itself from q's Recomputation vector
Reset p's Stop bit if it is "ON"
Backtracks with popping the HP-stack until finding an element of the HP-stack referring to a SF
If the SF refers to a processor in the Computation mode which is not q
Then
Insert p in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
Else
Reset its respective bit and decrement RC of the SF
Unlock
Loop
Reset p's Stop bit if it is "ON"
Backtracks with popping the HP-stack until finding an element of the HP-stack referring to a SF
Lock
If the SF refers to a processor in the Computation mode which is not q
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit and decrement RC of the SF
Unlock

A processor in Computation mode processes the FAIL performs the following actions.

- It backtracks to the latest SF.

- If the SF refers to untried branches, it takes one of them. If that SF is accessible by only the
current processor and there is no more untried branches, the local CP frame and SF are

deallocated.

- If the SF does not refer to untried branches, but refers to processors in the Computation mode,
one of these processors is followed.

- If no untried branch is found and no processor in the Computation mode is followed, one SF
after the other is investigated until a SF having either untried branches or processors in the
Computation mode is found.

The above actions can be specified as follows.

Lock
While the SFA field of the top element of the HP-stack = NOSF DO pop
If there is untried branches of the SF referred by the current top element of the HP-stack
Then
Case NextUntriedBranch Of
RETRY:
Update NUB field of the SF
Update the B# field of the top element of the HP-stack
Unlock
Reset the state from the CP
Process the branch
TRUST:
Case RC of the SF Of
1:
Update the top of HP-stack to (Branch#, NOSF)
Deallocate the SF
Unlock
Reset the state from the CP
Deallocate the current CP frame
Process the branch
>1:
Update NUB field of the SF
Update the B# field of the top element of the HP-stack
Unlock
Reset the state from the CP
Process the branch
Else
Put itself in the Recomputation mode
If All processors in the Recomputation mode Then Exit
If The SF refers to processors following it
Then set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
Else
Reset its respective bit and decrement RC of the SF
Unlock
Loop
Backtracks with popping the HP-stack until finding an element of the HP-stack referring to a SF
Lock
If The SF refers to processors following it
Then set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit and decrement RC of the SF
Unlock

11. Start Up

When the system starts up, p1 will be in the Computation mode and all the other processors will
be in the Recomputation mode as shown in Figure 7. When a user query is read, all processors
start in parallel processing the query. P1 only is allowed to create the first SF when it gets the
first CP, i.e. when p1 executes the first TRY instruction. Any one of the other processors will
suspend within TRY instruction if it executes the first TRY instruction before pl.

Implementation of the other idea is as follows. Assume that, there is at least one choice point in
the user program and there is a global cell. Initially, the global cell contains a special value, say
"0", which is not a processor name. When the user query is read, all processors process the
query in parallel. The first in time, say p, that gets the first TRY instruction, writes its name in
the global cell and creates the first SF. When any of the other processors gets its first TRY
instruction, it finds the name of the processor that has created the first SF in the global cell. Then
it can access that SF via the first entry in the p's HP-stack.

12. Bounded Global Storage

Split frames and HP-stacks reside in the global memory. The number of used SFs is equal to the
number of active CPs in the search tree. This number depends on the user program. The
maximum size of a HP-stack is equal to the number of CPs in the deepest path of the search tree.
It also depends on the user program. In this section we explain how the system works when the
global storage is limited.

Assume that the global storage is bounded to M SFs and n HP-stacks of size L each. One
possible solution is as follows.

- When a processor in the Computation mode is going to create a new SF and detects shortage
of SFs or "L-1" entries in its HP-stack, it pushes a special entry (Stuck) in the HP-stack,
pushes Mark entry in the local CP stack, and switches to sequential execution mode. A
processor in the sequential mode processes its current job sequentially on the local memory only
as conventional WAM. When it finishes that job and backtracks to the Mark entry, it switches to
parallel execution mode and works again on the global SFs.

- When a processor in the Recomputation mode reaches a Stuck entry of a HP-stack, it stops
following any processor and removes itself from all SFs accessible by it. This processor never
gets a new job.

- Processors that do not discover shortage of global storage proceed in parallel.

This solution reduces the number of working processors in the system and restricts the
parallelism depending of the values of M and L, and the user program. When a processor
switches to the sequential execution mode, it processes its job on the local memory with the
same performance as sequential WAM.

Other solutions are possible. For instance, a solution that is based on processors in the
Recomputation mode that discover shortage of global storage may backtrack and follow other
processors in the Computation mode. Hopefully, when they find a job, some storage is freed up
by the other processors.

If the first solution is taken, the TRY and FAIL instructions are specified as follows. Added
parts to the above specification are underlined.

TRY Instruction:
When a processor is in the Computation mode, it executes the TRY instruction as follows.

If processor_in the parallel execution mode

IThen

If There is a free SF And HP-stack depth < L-1
Then
Lock

Create a SF of reference s

set RC, NUB and the respective bit of the current processor on the SF
Push (1,s) in the HP-stack

Unlock

Set up a local CP

Process the first branch

=
o
i
©

Push(, Stuck) in the HP-stack
Unlock

Switch to sequential mode
Push(Mark) in the local CP-stack
Executes WAM's TRY instruction

Executes WAM's TRY instruction

When a processor is in the Recomputation mode, it executes the TRY instruction as follows.
Assume a processor p is following another processor q and the depth of p's HP-stack is 1.

Lock
If (q in the Recomputation mode And g's HP-stack depth < i) Or p's Stop flag is "On"
Then
Reset the respective bit in the g's Recomputation vector
Reset p's Stop flag (if it is On)
Loop
While the SFA field of the top element of the HP-stack = NOSF DO pop
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field according to the selected branch
Reset the state from CP
process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit and decrement RC field of the SF
Deallocate the SFif RC =0
Unlock
Remove the CP
lock
Else
If g's HP-stack depth =i
Then Unlock, try again later on
Else
If SFA field of the j+1th element of g's HP-stack = Stuck
Then
Reset the respective bit and decrement RC field in all accessible SFs
Remove itself from the Recomputation vector
Unlock
Llse
If SFA field of the i+1th element of q's HP-stack = NOSF
Then
Push the i+1th element of q's HP-stack in the p's HP-stack
Unlock
process the branch without creating a local CP

10

Else

Add itself and inc. RC in the SF referred by the i+1th element of q's HP-stack

If there is untried branches
Then
Update NUB field of the SF

Push i+1th element of ¢'s HP-s. with the selected branch in p's HP-s.

Switch to Computation mode
Remove itself from q's Recomputation vector
Unlock
Create a local CP
Process the selected branch
Else

Push the i+1th element of g's HP-stack in the p's HP-stack

Unlock
Create a local CP
Process the pushed branch

FAIL Instruction

If processor in the sequential execution mode

Then

If Mark entry in the CP stack is not reached on sequential WAM's FAIL
Then Process the next branch

Else

Pop Mark entry from the CP stack

Switch to parallel execution mode
Lock
While the SFA field of the top element of the HP-stack = NOSF DO pop

1f there is untried branches of the SF referred by the current top element of the HP-s

Then
Case NextUntriedBranch Of
RETRY:
Update NUB field of the SF
Update the B# field of the top element of the HP-stack
Unlock
Reset the state from the CP
Process the branch
TRUST:
Case RC of the SF Of
1:
Update the top of HP-stack to (Branch#, NOSF)
Deallocate the SF
Unlock
Reset the state from the CP
Deallocate the current CP frame
Process the branch
>1
Update NUB field of the SF
Update the B# field of the top element of the HP-stack
Unlock
Reset the state from the CP
Process the branch
Else

Put itself in the Recomputation mode
If All processors in the Recomputation mode Then Exit
If The SF refers to processors following it
Then Set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock

A processor in Computation mode processes the FAIL instruction as follows.

11

Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
Else
Reset its respective bit, decrement RC of the SF and deallocate the SF if RC=0
Unlock
Loop
Backtracks with popping the HP-stack until finding an element of the HP-stack
referring to a SF
Lock
If The SF refers to processors following it
Then Set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit and decrement RC of the SF and deallocate the SF if
RC=0
Unlock

13. Locking Strategies

So far we have used a very simple locking strategy in which only one processor at a time
manipulates the global control information. In this section we present two locking strategies that
allow parallel manipulation of the global control information.

The global control information can be divided into two sections: shared and unshared sections.
The shared section is the part of the global control information shared by more than one
processor. The unshared section is the part of the global control information accessible by only
one processor. Figure 8 shows the part of a search tree which is associated with shared control
information.

The first locking strategy is as follows. Whenever no processor is manipulating control
information of the shared section, processors can manipulate control information of the unshared
section in parallel. When a processor is manipulating a part of global control information of the
shared section, no any other processor is allowed to manipulate any part of the global control
information.

In the second locking strategy, many processors can manipulate control information in the
unshared section in parallel with one processor at a time can manipulate control information in
the shared section.

Implementation of the first locking strategy

The first strategy can be implemented by a global lock and a global counter. The counter counts
the number of processors simultaneously manipulating the unshared section. Only when the
counter reading is zero, it is possible for only one processor at a time to do global lock. Initially,
the global counter is zero and the global lock is unlocked. The definition of TRY and FAIL
instructions are modified as follows.

Assume the following:

- Allocating or deallocating of a SF is an atomic operation.

12

- LocalLock operation increments the global counter by one and returns only when the global
lock is unlocked.

- LocalUnlock operation decrements the global counter by one.

- Lock operation locks the global lock only when it is unlocked and the global counter is zero.

- Unlock operation unlocks the global lock.

TRY Instruction:
When a processor is in the Computation mode, it executes the TRY instruction as follows.

Create a SF of reference s

set RC, NUB and the respective bit of the current processor on the SF
LocalLock

Push (1,s) in the HP-stack

LocalUnlock

Set up a local CP

Process the first branch

When a processor is in the Recomputation mode, it executes the TRY instruction exactly the
same as defined before with the new definitions of Lock and Unlock operations.

FAIL Instruction
Modifications to the above definition of the FAIL instruction (Computation mode) are as
follows.

- Tt first requests a local lock.

- It backtracks to the latest SF.

- If the SF is accessible by the current processor only, the processor manipulates the SF.

- If the SF is accessible by more than one processor, locking of the global lock is requested.

- The rest is exactly the same as defined before.

13

LocalLock
While the SFA field of the top element of the HP-stack = NOSF DO pop
If RC of the SF=1
Then
Case NextUntriedBranch Of
RETRY:
Update NUB field of the SF
Update the B# field of the top element of the HP-stack
LocalUnlock
Reset the state from the CP
Process the branch
TRUST:
Update the top of HP-stack to (Branch#, NOSF)
LocalUnlock
Deallocate the SF
Reset the state from the CP
Deallocate the current CP frame
Process the branch
Else
LocalUnlock
Lock
If there is untried branches of the SF referred by the current top element of the HP-stack
Then
Update NUB field of the SF
Update the B# field of the top element of the HP-stack
Unlock
Reset the state from the CP
Process the branch
Else
Put itself in the Recomputation mode
If All processors in the Recomputation mode Then Exit
1If The SF refers to processors following it
Then set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
Else
Reset its respective bit, decrement RC of the SF,and deallocate the SF if RC=0
Unlock
Loop
Backtracks with popping the HP-stack until finding an element of the HP-stack
referring to a SF
Lock
If The SF refers to processors following it
Then set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Unlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit, decrement RC of the SF and deallocate
the SFif RC=0
Unlock

14

Implementation of the second locking strategy

We implement the second strategy by using one global lock and n local locks, one for each
processor. Each HP-stack is associated with an additional pointer, called Last Shared Entry
(LSE), that points to the latest entry in the HP-stack containing a reference to the latest SF
shared by other processors. Entries in the bottom of the HP-stack to the entry pointed by LSE
refer to SFs shared by more than one processor (see Figure 9). The other entries in the HP-stack
refer to SFs accessible by only one processor. When LSE and Current Branch pointers of a
processor p refer to the top entry of p's HP-stack, all entries in the stack refer to shared SFs.
The difference between the LSE and Current Branch pointers of a HP-stack, called
Displacement, indicates the number of unshared SFs in that stack.

The definition of the lock operations can be defined as follows.

- Glock: locks the global lock.

- Gunlock: unlocks the global lock.

- Lock(p): locks p's lock
If Displacement >0
Then return(TRUE)
Else return(FALSE)

- Unlock(p): unlocks p's lock.

As a rule, before manipulating the two pointers of a HP-stack, the respective local lock has to be
Jocked first. The definition of TRY and FAIL instructions are modified as follows.

TRY Instruction:
When a processor is in the Computation mode, it executes the TRY instruction as follows. Once

the current processor has succeeded to lock its lock, it can push a new entry of its HP-stack
safely.

Create a SF of reference s

set RC, NUB and the respective bit of the current processor on the SF
Lock{me)

Push (1,s) in the HP-stack

Unlock(me)

Set up a local CP

Process the first branch

When a processor is in the Recomputation mode, it executes the TRY instruction according to
the following actions. Assume a processor p is following another processor g and the depth of
p's HP-stack is i.

- P locks the global lock and q's lock first.

- P stops itself when it reaches a point the processor q has backtracked from or if p's Stop flag is
"On". Then p unlocks q's lock and looks for a processor in the computation mode to follow.

- If p is following q and p reaches the next CP before q, p has to wait until q reaches that point.
In this case, p releases both global and g's locks and requests them later on.

- If the next CP is processed by q only and q is processing the last branch of the CP, p
processes that branch of the CP without creating a local CP frame. The global and q's locks are
unlocked.

- If the next CP has untried branches, p takes one of them and creates a local CP frame. P
advances q's LSE pointer to point to the HP-stack entry that corresponds to the CP, if q's LSE

15

pointer is not already pointing to that entry. The global and q's locks are unlocked.

- If the next CP has no untried branches and there are more than one processor processing
different branches of that CP, p creates a local CP frame and follows q. The global and q's locks
are unlocked.

The above actions can be specified as follows.

Glock
Lock(q)
If (q in the Recomputation mode And q's HP-stack depth < i) Or p's Stop flag is "On"
Then
Unlock(q)
Reset the respective bit in the g's Recomputation vector
Reset p's Stop flag (if it is On)
Loop
While the SFA field of the top element of the HP-stack = NOSF DO pop
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Gunlock
Update the B# field according to the selected branch
Reset the state from CP
process the selected branch until the next TRY instruction
BreakLoop
Else
Reset its respective bit and decrement RC field of the SF
Deallocate the SFif RC =0
Gunlock
Remove the CP
Glock
Else

If q's HP-stack depth =i
Then Unlock(q), Gunlock, try again later on
Else
If SFA field of the i+1th element of q's HP-stack = NOSF
Then
Push the i+1th element of q's HP-stack in the p's HP-stack
Unlock{q)
Gunlock
process the branch without creating a local CP
Else
Add itself and inc. RC in the SF referred by the i+1th element of q's HP-stack
If there is untried branches
Then
Update NUB field of the SF
Push the i+1th element of q's HP-s. with the selected branch in p's HP-stack
Advance g's LSE pointer, if p and q are only in the SF (i.e., if RC of the SF = 2)
Unlock(q)
Switch to Computation mode
Remove itself from q's Recomputation vector
Unlock
Create a local CP
Process the selected branch
Else
Push the i+1th element of g's HP-stack in the p's HP-stack
Unlock(q)
Gunlock
Create a local CP
Process the pushed branch

AIL Instruction

A processor p in Computation mode processes the FAIL performs the following actions.

16

- P locks its local lock.

- If p has unshared SFs, it backtracks to either the latest unshared SF which has untried

branches or the latest shared SF.

- If the SF refers to untried branches, it takes one of them. If that SF is unshared and there is no

more untried branches, the local CP frame and SF are deallocated.

- If the SF does not refer to untried branches, but refers to processors in the Computation mode,

one of these processors is followed.

- If no untried branch is found and no processor in the Computation mode is followed, one SF
after the other is investigated until a SF having either untried branches or processors in the

Computation mode is found.

The above actions can be specified as follows.

Loopl

If Lock{me)

Then

Else

If the SFA field of the top element of the HP-stack = NOSF

Then

Else

Pop
Unlock(me)
ContinueLoopl

Case NextUntriedBranch Of
RETRY:
Update NUB field of the SF

Update the B# field of the top element of the HP-stack

Unlock(me)
Reset the state from the CP
Process the branch
Return

TRUST:
Update the top of HP-stack to (Branch#, NOSF)
Unlock{me)
Deallocate the SF
Reset the state from the CP
Deallocate the current CP frame
Process the branch
Return

Unlock{me)

Glock

If there is untried branches of the SF referred by the top element of the HP-stack

Then

Else

Update NUB field of the SF

Update the B# field of the top element of the HP-stack
Gunlock

Reset the state from the CP

Process the branch

Return

Put itself in the Recomputation mode
If All processors in the Recomputation mode Then Exit

17

If The SF refers to processors following it
Then set Stop flags of these processors
If the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Gunlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY instruction
Return
Else
Reset its respective bit and decrement RC of the SF
Pop
Gunlock
Loop2
Glock
Backtracks with popping the HP-stack until finding an element of the
HP-stack referring to a SF
If The SF refers to processors following it
Then set Stop flags of these processors
1f the SF refers to a processor in the Computation mode
Then
Insert itself in the respective Recomputation vector
Gunlock
Update the B# field of the top element of the HP-stack
Reset the state from the CP
Process the selected branch until the next TRY inst.
Return
Else
Reset its respective bit and decrement RC of the SF
Gunlock
ContinueLoop2

NB: The Pop operation updates the LSE and Current Branch pointers of the respective
HP-stack, if both pointers point to the top element.

14. Hardware Architectures

This section gives suitable architectures that support the model. Three architectures are shown in
Figure 10. Each processing element has its local memory (LM). The global memory (GM) is
physically distributed.

In Figure 10 (a), each processor has a part of global memory (GM). Accessing a local GM is
performed directly while accessing remote GM is through the common bus. In Figure 10 (b),
cache memory (CM) is used as in Sequent for caching global information. In Figure 10 (c), GM
is exactly the same as in (a) but a communication processor (CP) in each node is used for
communicating and processing nonlocal requests. Requests to the local part of global memory
can be performed directly by the corresponding processor (p).

15. A Method for Nonshared Memory Multiprocessor

In this section we outline a method with the same principle presented in this report for nonshared
memory multiprocessor. In the method outlined in this section, we combine the history path idea
from this report with multisequential machine idea [Ali86].

Assume a system with a number of processing elements (PE) connected by some medium that
provides communications from every PE to all other PEs. Every PE has a local memory for
holding a copy of program code and environment. Every PE is exactly the same as WAM with
an additional HP-stack.

18

The method is outlined as follows.
1. All PEs in the system start simultaneously processing the top-level query.
2. Every PE independently selects a part of the search tree for processing exactly the
same as in [Ali86].
3. Every PE maintains its current path from the top-level query to the current branch in
its History-Path stack.
4. When a PE p has completed processing its part of the tree and there is another PE q
with unprocessed job, q sends a path to p specifying an unprocessed branch. The PE
p compares the received path from q with its History-Path stack. In general, there is a
common part starting at the root. The PE p backtracks to the common part, then it
processes the received uncommon part.

We notice that, PEs communicate only information specifying a path and not a computation
state. Communications occur only when there are idle PEs and busy PEs with unprocessed job.
The required communication capacity is not high. The performance of every PE is almost as the
WAM.

Improvement

Since recomputation time is long, a PE q that gave a branch to another processor p may finishes
its job before p starting processing that branch. In this situation, it is more effective to allow the
PE that reaches the unprocessed branch first to process it. That is, we need a mechanism that
makes a PE that gave a job to change its mind when it wishes.

Our solution is as follows. Assume that every PE is associated with a bit-vector of size N,
where N is the number of processors in the system. That is, there are N bit-vectors in the
system; one vector in each PE. Initially, all bits are OFF. When a PE q gives another PE p a
branch i at a choice point ¢, q turns ON the p's bit in its local bit-vector indicating that one of my
branches is sent to p. The branch i at choice point c is marked as it has sent to p. Now either p or
q can process that branch. If q has finished its job and backtracked to c before p, q checks p's
bit. If it is ON, q turns it OFF (and possibly signal p) and processes the branch.

If p reaches that branch before g, p sends first a CHECK message to q to check whether that
branch is processed or not. When g receives that message from p, it just checks p's bit in the
local vector. If it is ON, q turns it OFF and responses with positive acknowledgement,
otherwise with negative acknowledgement. When p receives a positive acknowledgement only,
it will process the branch.

This solution requires one bit-vector of size N at every PE and extra information at choice points
that have some of their branches at remote PEs. We could keep a list at each choice point
containing name of remote PEs and the respective branches. Since every PE may give at most
one path to each other PE at a time, the maximum number of entries in all lists on one PE is N -

If we use one-word vector of size N instead of one bit-vector at every PE, we could use a
pointer to a local choice point when a branch of that choice point is at a remote PE. If a pointer is
not NULL, the respective branch is unprocessed. The pointer allows every PE to directly
deallocate a list entry when the respective branch is processed.

16. Conclusion and Discussion

We have presented a method for OR-parallel execution of Horn clause programs on a shared
memory multiprocessor system. The shared memory contains only control information that
guide processors requesting a job to independently construct the required environment to get a
new job without degrading the performance. The method utilises the technology devised for the
sequential implementation of Prolog. The only overhead in comparison with the sequential
WAM is the maintenance of the global control information: some extra overhead on TRY,
RETRY, TRUST, and FAIL instructions only.

19

A general model for nonshared memory architectures, for a very large system, based on the
same principle is outlined. The performance of each processor is almost the same as the
sequential WAM.

If we compare our method that shares some control information with the complete global
memory model [Over86], we expect that maintenance of binding environment (environment
stack, Trail stack, and Heap) is much simpler in our method. The cost of getting a new branch in
both methods is probably the same. This is because, in our method choice point stacks reside in
the local memories while in the other method reside in the global memory. Our method requires
one complete physical copy of the binding environment in each processor's memory, while the
other method uses a multiple logical copies of the environment in the global memory. The
granularity of atomic operations on shared information may be larger in our method. Some
possible optimization can be done in our method to reduce granularity of these operations by
using better representation of the shared data structures and faster algorithms.

It is planned to evaluate the two methods on the Sequent Balance 8000 by Milton Wong at the
Royal Institute of Technology, Stockholm. Investigation of the treatment of cut and the
extra-logical predicates of Prolog is an interesting future work. A general locking mechanism
that allows parallel manipulation of the shared control information is under investigation.

q

Figure 1: The Basic Idea
» p has finished its branch

« p backtracks to x and follows q
« p gets a branch from q at choice point y

(&

Branch Framo Branch Frame Branch Frame Branch Framo
Number Address Numbor Address Number Address Number Addross

1 ixi 11« 2 fxi 2 |xi
1 {x2 2 | x2 1 1x3 2 {x3 Stacke
1 jx4

HP-Stack ol P1 HP-Slack of P2 HP-Slack of P3 HP-Stack of P4

Figure 2 (a) Numbering of branches (b) History-Path stacks

NUB: Next Untried Branch

Figure 3: Split frames associated with the active choice points

History-Path

CP-Slack CP-Stack CP-Slack CP-Stack
P1 P2 P3 P4

[][]

} =]

Figure 4: Local choice point stacks

l Y I Recomputation Flags

°_|

? []
Recomputation Matrix
; [~]
4 o | | o
Assoclaled
with: P1 P2 P3 P4

Figure 5: Recomputation flags and Recomputation matrix
for the example shown in Figure 2.

Split Frames

a P2 F3 P4 RC NUB
SFA
at: | 1 [T 1 + 1 « =]
a22l1 l 1 l 0 I 0 I 2 l ,.._.,,1
@l o | o | | 1| 2 | T N‘N~~ﬂ
wlo T+ T o[o [+ [——"
85.[0 l 0 I 0 l 0 l 0 l <«
aﬁz‘ 0 I 0 l 0 l o I o I “
B S B B o
ak:] 0 l 0 I 0 [0 I o I/I‘

I I l l l l [0 l Recomputation Flags (The flag Is on only when the respective processor
0 0 o is in the Recomputation mods)

[0 l | 0 l [0 l l 0 l #Recomputing Processors

2
R putation Matrix
3
4
L ol of [of[of stopms

|] | Current Branch

B#: Branch Number
SFA: Split Frame Address

B# SFA Bif SFA BE SFA Bit SFA
i 1 lal 2 lal 2. lal History-Path Stacks
i.1a2 12.La2l 1 1a3 2 1a3

1 1ad]

Global Information

Local CP Stacks

[+]
4
o

P1 P2 P3 P4

Figure 6: A snapshot of the global state of the example shown in Figure 2.

